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Invivo lineage tracing holds great potential to reveal fundamental principles
of tissue development and homeostasis. However, current lineage

tracing in humans relies on extremely rare somatic mutations, which has
limited temporal resolution and lineage accuracy. Here, we developed
ageneric lineage-tracing tool based on frequent epimutations on DNA
methylation, enabled by our computational method MethylTree. Using
single-cell genome-wide DNA methylation datasets with known lineage and
phenotypiclabels, MethylTree reconstructed lineage histories at nearly
100% accuracy across different cell types, developmental stages, and
species. We demonstrated the epimutation-based single-cell multi-omic
lineage tracing in mouse and human blood, where MethylTree recapitulated
the differentiation hierarchy in hematopoiesis. Applying MethyITree to
human embryos, we revealed early fate commitment at the four-cell stage.
In native mouse blood, we identified ~250 clones of hematopoietic stem cells.
MethylTree opens the door for high-resolution, noninvasive and multi-omic
lineage tracing in humans and beyond.

Tracinglineage historiesin model organisms through genetic manipula-
tion hasimproved greatly over the past decade’. High-resolution line-
age tracing can be achieved by labeling individual cells with induced
and heritable DNA mutations®?, which can be profiled later through
single-cell sequencing. We have recently developed DARLIN, a highly
efficient lineage-tracing mouse model that can generate ~10*® distinct
lineage barcodes on induction at a defined time window”. Applica-
tions of these recent lineage-tracing tools have revealed important
insights regarding cell fate choice®”™, cell migration dynamics®,
cancer evolution®*”' and clonal memory"?,

In contrast, lineage tracing in humans has been much less devel-
oped as genetic manipulation is prohibited. Cell lineages in humans
can be inferred from somatic mutations in our genome?®-**. However,
this approach requires whole-genome DNA sequencing of single-cell
derived colonies, which is low-throughput and does not provide

cell-state information*?°. Although mitochondrial DNA (mtDNA)
mutations could be used to trace cell lineages at higher throughput?,
they undergo complex processes of inheritance and selection, which
may give poor lineage accuracy”® . Due to extremely slow somatic
mutations (<10~ per nucleotide per cell division)™, these methods likely
cannot resolve lineages atamuchshorter timescale like days. It is highly
desirable to develop analternative noninvasive lineage-tracing method
that provides a high ‘temporal’lineage resolution, achieves nearly100%
accuracy, and is also compatible with single-cell multi-omic profiling.

In mammals, DNA methylation occurs mostly at the cytosine
residue in the CpG dinucleotide, which changes over time due to epi-
mutations that occur at a rate of ~0.001 per CpG site per division® .
We recently showed in hematopoietic stem cells (HSCs) that clonal
memory persists stably in DNA methylation for at least a few months,
but notin chromatin accessibility or gene expression®. This motivates
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ustodevelop agenericlineage-tracing tool based on epimutationson
DNA methylation. Previously, clone-specific DNA methylation pat-
terns have been observed in different contexts®***2, Bulk methylation
data have been used to track the evolution of individual alleles and
infer single-cell transition rates*. Epimutations have been explored
toinfer single-cell lineages** *¢, mostly in the context of cancer. How-
ever, theinferences were not convincing due to the lack of benchmark
against actual lineages from neutral labels. Furthermore, cancer cells
areknownto have strong genomic instability and highly aberrant DNA
methylation®. Therefore, it remains a substantial challenge to infer
lineages from epimutations in normal cells.

Developing an epimutation-based generic lineage-tracing tool
needs to address four critical challenges. First, along with lineage-
specific epimutations, cells also adopt cell-type-specific DNA methyl-
ation changes during differentiation*®, Correctly inferring lineages
from such confounding signals is crucial for lineage tracing, and this
challenge cannot be addressed by existing lineage inference methods
in cancer**, Second, global DNA methylation level undergoes drastic
modaulation during development*®, which could disrupt existing epi-
mutations and cripple lineage inference from DNA methylation. In
addition, single-cellgenome-wide DNA methylation datatypically covers
only~5%of the genome, leading to a highly sparse matrix with >95% miss-
ingvalues, whichmakeslineage inference extremely challenging. Finally,
how to deal with the heterogeneous measurement noise between cellsis
alsoatricky problem. So far, thereis not yet asystematic approach that
addresses all these challenges to enable a generic lineage-tracing tool
from sparse, genome-wide DNA methylation data. Below, we developed
a computational framework called MethylITree to address these chal-
lenges and demonstrate its power in broad biological contexts.

Results

Lineage inference from sparse single-cell DNA methylation

We first considered the problem of lineage inference in a homogene-
ous population of the same cell type. In this case, DNA methylation
differences among these cells would result from stochastic epimuta-
tions at individual CpG sites, which can be used to infer cell division
histories (Fig. 1a). Genome-wide DNA methylation can be profiled in
single cells with bisulfite sequencing (scBS-seq)***°, which results in
~5% genomic coverage ata standard sequencing depth of 1 Gigabyte of
bases or 3.3 million reads per cell. This translates to only around 0.25%
overlapping CpGsites that are jointly detected intwo given cells. How to
reliably extract lineage information from this highly sparse single-cell
DNA methylation datais a considerable computational challenge.

Oneway toaddress this challenge is to aggregate signals over very
large genomic bins (for example, 100,000 bp), so that each bin has
enough observed values. Thisisastandard practice in existing feature
extraction methods for DNA methylation data®*?, However, averaging
over alargebinwould erase stochastic epimutations. We used amuch
smaller region (for example, 500 bp or single-CpG sites) to preserve
lineage signals. The resulting cell-by-feature methylation rate matrix
contains mostly missing values (Fig. 1b). Imputing these missing values
is required for the standard single-cell analysis workflow. However,
imputation could also degrade the stochastic lineage signals.

To circumvent this problem, we directly evaluated the pairwise
similarity S; between two cells i and j by computing the Pearson cor-
relation using just the entries observed in both cells. Pearson correla-
tion is known to bias toward zero if the raw data suffers from
measurement noises***. Specifically, S; =ZiS;Z j, where S is the
noise-free correlation, S; is the observed correlation that suffers
from measurement noises and Z; > 1 is the noise damping factor.
A uniform Z; across cells simply rescales the matrix S;. However, a
heterogeneous Z; would distort the similarity matrix, which would
require correction. We developed an iterative approach to search for
the optimal damping factor Z; that minimizes the variation of the
bias-corrected similarity matrix S; The corrected similarity matrix S;‘j

can be used to infer the lineage phylogeny and visualize lineage simi-
larity inlow dimensions. We combine branch support values and simi-
larity scores to jointly identify cells from the same clone. We will refer
to this computational approach as MethylTree (methylation
similarity-based lineage tree inference; Fig. 1b), and the inferred clones
are named methyl clones.

We use theinferred lineage ordering to rank the similarity matrix.
To evaluate the lineage ordering with ground-truth lineage or clone
labels, we computed for each clone the largest fraction of cells that are
grouped togetherinthelineage ordering, subtracted the randomness
background and thenreported the average score across all clones as the
final lineage accuracy Q (Fig. 1c). Exact lineage ordering corresponds
to Q=1,whilerandomized ordering gives Q = 0.

MethylTree recovers cell lineages in homogeneous
populations

The high epimutation rate on DNA methylation should enable us to
resolve the entire division histories of human cells. To test this, we
simulated clonal expansion from a single human cell under realistic
conditions and obtained the single-cell methylation data with low
genomic coverage. MethylTree correctly infers the entire division his-
tories at 5% genomic coverage (Fig.1d; Q =1), orevenjust 1% (Fig.1e). A
higher genomic coverageisneeded at alower epimutation rate (Fig. 1f).
MethylTree works robustly with more complex epimutation processes
(Extended Data Fig. 1a,b). Therefore, it is possible to reconstruct the
full division historiesin human cells from highly sparse single-cell DNA
methylation data.

Next, we carried out a single-cell colony expansion experiment
with human embryonic kidney (HEK) 293T cells to test MethylTree on
real data. In this experiment, we expanded each 293T cell from distant
lineagesinto alarge clone. To add lineage complexity, we also seeded
single cells to generate subclones. We profiled multiple cells from
each clone with scBS-seq at ~5% genomic coverage (Fig. 1g,h). Apply-
ing MethylITree to this dataset, the raw similarity matrix between cells,
though distorted by measurement noises, can already resolve cells by
their clonal identity (Fig. 1i; Q = 0.84). After applying our correction
algorithm, the new similarity matrix shows block-wise structure within
each clone and accurately resolves the lineages (Fig. 1j; Q=1). The
closer lineage relationship between P9_1and P10_1 was also inferred
correctly (Fig. 1k,1). When down-sampling the sequencing reads to
just 2% genomic coverage per cell, MethylTree still achieved nearly
exact lineage reconstruction (Fig. 1m), similar to our observations
in simulation.

We systematically evaluated the performance of MethylTree
on this 293T dataset. Simply using 29 million individual CpG sites,
without binning, leads to exact lineage inference (Q =1; Extended
Data Fig. 1c). We observed accurate performance using the faster,
region-based method, which works robustly across most parameter
choices (Fig.1In and Extended DataFig. 1d-g). In addition, our approach
is robust to technical variations like the heterogeneity of CpG cover-
age between cells (Extended DataFig. 1h). We also found that Pearson
correlation performs better than Euclidean and cosine similarity,
and unweighted pair group method with arithmetic mean (UPGMA)
infers abetter lineage than neighbor-joining or FastME (Extended Data
Fig. 1i,j)*°. Finally, MethylTree exactly reconstructed lineages from
another in-house generated clonal-expansion dataset of H9 human
embryonicstem cells (Extended Data Fig.2a-c; Q =1),and alsofroma
public dataset of human colorectal cancer® (Extended Data Fig. 2df;
Q=1). Overall, these results confirm that DNA methylation epimuta-
tions faithfully track cellular lineage histories and MethyITree robustly
reconstructs lineages from sparse single-cell DNA methylation data.

Lineage reconstruction in a heterogeneous population
During development and differentiation, changes of DNA methyla-
tion not only come from ‘stochastic’epimutations that reflect lineage
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Fig. 1| Epimutation-based lineage inference in ahomogeneous population.
a, Accumulation of epimutations during single-cell expansion. b, Schematic

of MethylTree workflow. Sparse single-cell DNA methylation signals (left) can
be aggregated in selected genomic regions and used to compute a cell-cell
similarity matrix (middle), which can be used for lineage tree reconstruction
and dimension reduction (right). ¢, Schematic of our lineage accuracy metric
Q.d-f, Lineage reconstruction from simulated single-cell expansion shownin
a.Itgenerates 128 cells after seven divisions. d, Lineage-ordered heatmap of the
methylation similarity for these cells, simulated at epimutation rate of 0.001
(unit, per CpG sites per division) and profiled at 5% genomic coverage. Color bar
indicates synthetic clonal barcodes introduced at the 16-cell stage after the first
four divisions. e, Same as d, but profiled at 1% genomic coverage. f, Heatmap of
MethylTree lineage accuracy at various genomic coverage and different mutation

Sparse scDNA

Average within selected

rates. The results were averaged over ten independent simulations. In the
heatmap, the asterisk * corresponds to d and the plus symbol + corresponds to

Cell-cell similarity

Coverage (%)

BioRender.com.

e.g-n,Benchmark with293T cells. g, Schematic of single-cell colony expansion
with293T cells. h, Expected lineage hierarchy among the profiled cells. i, Raw
methylation similarity heatmap of the profiled 293T cells. Green arrows highlight
correlations between cells from the same clone but not grouped together.

Jj, Correlation-bias-corrected methylation similarity. k, Reconstructed lineage
tree from the similarity matrix inj. Ini-k, cells are colored by their clonal identity
illustrated inh.1, Lineage hierarchy of all the five clones inferred from the
coarse-grained methylation similarity matrix. m, Lineage accuracy when down-
sampling to different genomic coverages. n, Lineage accuracy corresponding
to all 55 choices of 500-bp genomic bins (Extended Data Fig. 1d) or merged bins
(Extended DataFig. 1e, f). Box plots show the median (50th percentile), the
bounds of the box represent the interquartile range (25th to 75th percentile)
and whiskers extend to 1.5 times the interquartile range. a,b,g,h, Created using
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Lineage inference in simulated stem cell differentiation
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Fig.2|Lineage inference from DNA methylation profiles in a heterogeneous
population. a, Schematic of stem-cell differentiation. b, Heatmap of the raw
methylation similarity in this simulated data of stem-cell differentiation. The
first column of the color bar indicates clone identity, and the second shows the
cell type label. ¢, Similarity heatmap with just cell-type signals. d, Heatmap of
the remaining lineage similarity after subtracting the cell-type signal ¢ from
theraw similarity inb. e, Heatmap of the inferred lineage similarity from the
raw similarity matrix in b, after cell-type-aware transformation. f-1, Lineage
reconstruction in the human fetal dataset generated by Li et al.*®. f, Similarity
heatmap of FGCs across fetuses and stages. g, Similarity heatmap for FGCs

within fetus_1from 21 weeks. h, Inferred lineages of FGCs from fetus_1, colored
by methyl-clone ID. i, Box plot showing the average global DNA methylation level
of somatic cells and FGCs over different stages. FGC cell number: 7 weeks, 97;

17 weeks, 164 and 21 weeks, 209. Somatic cell number: 7 weeks, 16; 17 weeks, 38
and 21 weeks, 53. See Fig. 1n for the box plot description. j, Similarity heatmap of
gonadal somatic cells across fetuses and stages. k, Heatmap of the raw similarity
matrix for cells from 21-week human embryos. 1, Heatmap of lineage similarity
after removing cell-type signal in k. m, Workflow of the MethyITree analysis.

a, Created using BioRender.com.

histories, but also from ‘deterministic’ and cell-type-specific regulation.
Therefore, when inferring lineages in a mixed population with cells
having highly different methylation profiles, the cell-type-specific
DNA methylation signal may dominate the similarity matrix and we
need to remove these cell-type signals.

One approachinvolves identifying genomic regions or CpG sites
that are lineage-specific and do not adopt cell-type-specific changes.
However, this is technically highly challenging, since any given CpG
site may be jointly observedin only afew cellsin this sparse DNA meth-
ylation data. Besides, these lineage-specific regions or CpG ssites need

to be determined with ad hoc cutoffs that are hard to decide without
knowing the actual lineages in advance. Here, we developed an alter-
native approach that first constructs the raw methylation similarity
matrix S as before, but seeks to remove the cell-type signal afterward.
We hypothesized that the raw matrix S is a linear combination of the
cell-type similarity Tand lineage similarity L, thatis, S= T+ L. The cell
typesimilarity, by definition, only depends on the cell type identity and
should be the same between two given cell types, regardless of lineage
relationships of selected cells. On the other hand, the lineage signal
L reports only lineage relationships and is reflected in the variations
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of the raw cell-cell similarity between two given cell types. Given the
cell-type label, we performed cell-type-aware transformation on the
raw similarity matrix to extract the lineage similarity matrix. This
approachis parameter-free, and computationally efficient. However,
this averaging approach may be less accurate if there are few lineages
or cellsin the same cell type.

Totestthisidea, we simulated ten clones, each starting from astem
cellthat partially self-renews and also stochastically differentiates into
cell type A and B (Fig. 2a). The DNA methylation profile on half of the
genome is cell-type specific. As expected, the raw similarity matrix S
(Fig.2b)isindeed asuperposition of the cell type signal T (Fig. 2c) and
the lineage signal L (Fig. 2d). The raw similarity matrix is dominated
by the cell-type signal, where cells are clustered according to their
celltypeidentity. Applying our method, we successfully extracted the
lineage similarity that groups cells according to their clonal identity
(Fig. 2e). MethylTree works robustly with different proportions of
lineage-specific CpG sites (Extended Data Fig. 3a-c).

Next, we tested our approach using published human fetal germ
cell (FGC) datasets with different cell types. Previous studies have
identified four FGC subtypes, each with distinct transcriptomic pro-
files”. Lietal. generated single-cell DNA methylation datasets for four
FGC subtypes as well as gonadal somatic cells across different stages
and from several human fetuses’®. Using only FGCs, MethyITree accu-
rately separated cells by their fetus origins, the lineage labels in this
dataset (Fig. 2f; Q =1). In fetus_1 of 21 weeks, the similarity matrix is not
separated by FGC subtypes, but dominated by block-wise structures
strongly indicative of cell lineages within this individual (Fig. 2g,h).
We observed similar results in fetus_2 of 17 weeks (Extended Data
Fig.3d-f), suggesting that the cell-type differences between FGC sub-
types are relatively small on DNA methylation as compared to their
lineage differences.

To create a scenario where the cell-type signal would dominate
the similarity matrix, we included the gonadal somatic cells jointly
profiledinthese datasets. These somatic cells have much higher global
DNA methylation levels than those of FGCs, since FGCs undergo fur-
ther global demethylation*® (Fig. 2i). We confirmed that MethylTree
also separated these somatic cells by their fetus origins (Fig. 2j; Q =1).
Withboth FGCs and somatic cells from 21 weeks, the similarity matrix
isindeed dominated by cell type differences (Fig. 2k). After applying
our method toremove the cell type signal, cells are clearly grouped by
their fetus origins inthe resulting lineage similarity matrix, despite that
FGCs and somatic cells have different global DNA methylation levels
(Fig. 2l and Extended Data Fig. 3g; Q =1). This dataset consists of two
pairs of twin fetuses. Each pair of twin fetuses are indistinguishable in
theinferred lineage tree, yet these two twin pairs are clearly separated
(Fig. 21). We observed similar success of our approach for removing
cell type signals when applying it to FGCs and somatic cells collected
from two 7-week-old embryos (Extended Data Fig. 3h; Q=1). In our
updated analysis workflow, cell-type signals are removed only when
it dominates the similarity matrix (Fig. 2m). Taken together, these

analyses demonstrate that MethylTree caninfer lineage histories even
inaheterogeneous population with different cell types.

Benchmark with in vitro blood differentiation

Next, we test the feasibility of epimutation-based single-cell multi-omic
lineage tracing in a complex differentiation system. We carried out an
invitrolineage-tracing experiment using blood progenitors extracted
fromanadult mouse and generated single-cell multi-omic readouts with
ground-truth lineages. Specifically, we extracted Lin cKit"Scal blood
progenitors fromasingle mouse, introduced LARRY lineage barcodesin
these cells by lentiviral infection™, cultured theminvitro for 6 daysina
media that supports cell expansion and pan-myeloid differentiation, and
finally profiled these cells with a modified Camellia-seq protocol that we
developed recently” to obtain LARRY lineage barcode, transcriptome
and DNA methylome simultaneously in single cells (Fig. 3a,b). Using
transcriptome, we identified eight cell types: megakaryocytes, eryth-
rocytes, basophils, mast cells, eosinophils, neutrophils, neutrophil-like
monocytes and dendritic-like monocytes (Fig. 3c and Extended Data
Fig.4a,b). We also observed 52 LARRY clones with >2 cells, and 21 were
foundin >2 cell types (Fig. 3b,d,e and Extended Data Fig. 4c).

Applying MethyITree, all 52 multi-cell LARRY clones were correctly
identified in this similarity matrix (Fig. 3f; Q =1), including 21 clones
consisting of more than one cell type (Fig. 3g). This is even before
cell-type-signal removal. Similar accuracy is achieved for both the
raw similarity matrix with or without correlation-bias correction, and
after removing cell-type signals (Fig. 3h and Extended Data Fig. 4d).
We expected lineage signals to be enriched at small genomic bins
due to sporadic nature of epimutations. To test this, we used fixed
nonoverlappingbins for feature extraction and computed the lineage
accuracy at different bin sizes. Indeed, the lineage accuracy is near 1
across different choices below 1,000 bp, but drops to only -0.2 at a
bin size 0of 100,000 bp, which is the commonly used bin size in DNA
methylation data analysis®** (Extended DataFig. 4e). To test the robust-
ness of the result over data sparsity, we also down-sampled the fastq
reads to different genomic coverages and found that amedian lineage
accuracy of Q =0.92 can be achieved at only 3.25% genomic coverage
(Extended DataFig. 4f).

Encouraged by this striking performance, we next test whether
DNA methylation can serve asreliable lineage barcodes and use them
toinfer the differentiation hierarchy of hematopoiesis. We identified
48 multi-cell methyl clones, which matched the observed LARRY
clones (adjusted rank index of 0.98) (Fig. 3f,i k). In total, 498 cells, or
92% of all cells, were among these multi-cell methyl clones (Fig. 3j).
Applying CoSpar® on these 48 multi-cell methyl clones, we computed
clonal coupling scores between different cell types (Fig. 31). The result-
ing lineage relationships between cell types match that computed
using the 52 LARRY clones (Extended Data Fig. 4g), and agree with
previous reports'*%,

By aggregating sparse single-cell DNA methylation measure-
ments from each cell type into a pseudobulk dataset, we found

Fig. 3| Single-cell multi-omic lineage tracing in in vitro blood differentiation
from mouse. a, Schematic of our single-cell multi-omic lineage-tracing
experiment with hematopoietic cells derived from a single mouse. b, Summary
of data statistics. ¢, UMAP embedding with single-cell transcriptome. Mk,
megakaryocytes; Er, erythrocytes; Ba, basophils; Ma, mast cells; Eos, eosinophils;
Neu, neutrophils; Neu-Mon, neutrophil-like monocytes; Dc-Mon, dendritic-like
monocytes. d, Heatmap showing the cell-type composition in each observed
clone. Only the 52 LARRY clones having more than one cell are shown. e, Six
selected clones on the transcriptomic embedding. f, Correlation-bias-corrected
methylation similarity matrix, without removing cell-type signals. The color

bar ontherightindicates the LARRY clones, methyl clones and cell type. Due to
limited colors, only 21LARRY or methyl clones are shown. Cell-type color is the
same as in c. Clones highlighted in e are indicated on this heatmap. g, Inferred
lineage phylogeny for cells associated with multipotent clones. h, Bar plot of

lineage accuracies from raw or correlation-bias-corrected similarity, or after cell-
type-aware transformation. i, Adjusted rank index between the predicted methyl
clones from the correlation-bias-corrected similarity matrix (same as f) and

the observed LARRY clones. j, Fraction of cells included in the multi-cell methyl
clones. k, 21largest LARRY or methyl clones on the methylation embedding. 1,
Clonal coupling score between different cell types computed with all multi-
cellmethyl clones. m, Pseudobulk DNA methylation profiles for all identified
celltypes on two selected genomic regions. Regions with cell-type-specific
differences are indicated by arrows. n, Schematic of generating ‘pseudo’ cells by
aggregating multiple single-cell profiles of the same type (indicated by shape)
but from different lineages (indicated by color). 0, Heatmap of methylation
similarity between 29 pseudo cells. BC, barcode; QC, quality control. a, Created
using BioRender.com.
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cell-type-specific DNA methylation patterns near key marker genes of
blood cells (Fig. 3m), yet similar methylationin other genomic regions
(Extended Data Fig. 4h). To enrich for cell-type-specific signals in
this DNA methylation dataset, we generated 29 ‘pseudo’ cells, each
aggregated from ~18 single cells of the same type but from roughly
eight different clones, thus averaging out lineage signals (Fig. 3n).
The resulting similarity matrix clustered together pseudo cells of
the same type (Fig. 30) and reflected the differentiation hierarchy
between different cell types (Fig. 31,0). We found that lineage-specific
CpGsites are depleted in CpG islands and gene body, but enriched in

b

Cell

solo-WCGW:sites (Extended DataFig. 4i), consistent with earlier reports
thatsolo-WCGW sites are prone to hypomethylation®>°,

We observed similar successes with an in vitro human blood dif-
ferentiation assay. Here, CD34" cells were sorted from human umbilical
cordblood, transfected with LARRY, cultured in amediathat supports
pan-myeloid differentiation and profiled with Camellia-seq on day 13
(Fig. 4a). We identified five cell types in this data from the single-cell
transcriptome, and 20 LARRY clones with more than one cell, among
which nine of them occupying multiple cell types (Fig. 4b-d and
Extended Data Fig. 5a). MethylTree reconstructed the human blood

c d 52 LARRY clones
(>1 cell)

Embedding based on transcriptome

a
)
Extract myeloid
blood progenitors ®
-

Cell number before QC 576 - 08 ¥
Add LARRY Cells passing mRNA QC 549 Cell type - g
lineage barcode Cells passing methy. QC 539 ® Mk L) %
Cells with valid LARRY BC 527 * ® Er 06 §
X P N .
Transcriptome § ) Cells with all three modalities 494 b MNM.% o ® Ba 2 S
g c-Mo o & o — =
DNA methylome ) L ® Ma [#] )
- In vitro ® Eos 04 9
LARRY lineage BC differentiation LARRY clone © Neu 3
T for 6 days Total LARRY clone number 75 ® Neu-M 2
leu-Mo N
LARRY clones with >1 cell 52 Do-M 02 g
c-Mo "
Ay LARRY clones with multiple fates 21 -, ~
— Single-cell sequencing 046 NA
P, ]
L N

Methylation similarity before cell type signal removal

Methyl-clone

g Only 21 multi-potent clones

A\\ i
N 1
/\\'\\%}K 1\

e Clone O Clone 5 f (only 21 large LARRY clones are colored)
\ Clone 44
.‘# ° ? Clone 45
o
°
Clone 12 Clone 44 Clone 51
e [ Pae o
2%

> %

NN R e W TIOW_T B T TTRNINE LARRY clone

Clone 45 Clone 51
’ ®
°
it L]
o ’ )
& o °
o . . . .
h 0 1 'g 10 ) 10 k 21 largest LARRY clones 21 largest methyl-clones | Cell ;Zg; l;:fee:?:drzllitr"c;?hlp
_~ 8 % on methylation embedding on methylation embedding o
s ] 3 Q
gg 0.8 fgg 0.8 9% 08 ® P | 015
8 c ca T e ® ® =
39 S o oA ] @ 0100 o
270G 06 £ 3 06 « 2 o6 ) o 3
S > <4 o0 @ @ 0075 §
o o > §5 e & & ® g & & ® 2
5% 04 Do 04 =3 04 0.050 3
Sy 25 8o ® @ 9 o € ® @& [ e
co 22 S Neu 0025 8
Sg o2 T9 02 5 02 . e © . e © Moo 025§
2 g g @ o °
o 5 ] ® 0 @ @ X 58 ® Q030
Raw Bias Cell type = Bias Bias = =m0 9= 2=
similarity corrected  signal corrected corrected o >
removed c 2
Cell-type-specific methylation differences
m chr2:91067000-91104000 chr11:87783000-87802000 n O Similarity between pseudo cells _
Er & o s
L A Y .‘ Er
Ma Neu
Ba Pseudo cell1  Pseudo cell 2 ZZ;TI\;;n
Eos Eos
Neu o
b 4 |
Neu-Mon 4 Ba
o A e °®
Dc-Mon s
Ref gene ,T,_ Pseudo cell 3  Pseudo cell 4 Va
Slc39al3 T Spit f t Mpo Clone, color  Cell type, shape

Nature Methods


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-024-02567-1

@ Human umbilical

Cell

d blood cell P g
cord blood cells N [4,94, Cell number before QC 312 X o K=
Qeéar)' Cells passing mRNA QC 265 Raw methylation similarity Sa
KA Cells passing methy. QC 261 for cells with detected clone labels (Q=1) ZZ
Taneari Cells with valid LARRY BC 204 38
ransc“pt:fl*‘e { Cells with all three modalities 204 [ = Glone.12
one_
DINA mét ylome In vitro ® Clone 13
LARRY lineage BC differentiation LARRY clone ] C:onejﬁ
T for 13 days : 212227159
Total LARRY clone number 30 Clone 6
. . LARRY clones with >1 cell 20 Clone 24
S(lngle-cell sequencing LARRY clones with multiple fates 9 - glt%r:'zg
\ Ma
HSPC
c Neu
Embedding based on transcriptome Clone 12 Clone 25 Clone 23 f,,fn/Dc
88 °
o o
HsRC e
o9 L Q}? 2 (]
Other §°o§ o"%yg’ %ég
Clone 16 Clone 6 Clone 5 A
Eos @ ° . .
8 k-
Neu 0608 §-13
Ma o 4.
Mon/Dc P d%o i
G Lt

Fig. 4 |Lineage inference from in vitro differentiation of human CD34" cells.
a, Schematic of our experimental design. b, Summary of data statistics.

¢, UMAP embedding and cell-type annotation with single-cell transcriptome.
HSPC, hematopoietic stem and progenitor cells. Otherwise, same as Fig. 3c.

d, Representative clonesillustrated on the transcriptomic embedding.

e, Correlation-bias-corrected methylation similarity matrix for cells with detected
clone labels, without removing cell-type signals. The color bar on the right
indicates the LARRY clones and cell type. The similarity matrix is generated using
allthe ~29 million single-CpG sites as features. a, Created using BioRender.com.

cell lineages with 100% accuracy, also without removing the cell type
information (Fig. 4e and Extended Data Fig. 5b,c). Together, these
results establish that MethylTree can be combined with single-cell
multi-omic profiling to enable high-resolution, noninvasive lineage
tracing in complex differentiation systems.

Early cell fate choice in human embryonic development

In mammals, cells within a developing embryo have indistinguish-
able morphologies and remain developmentally plastic until they
become inner cell mass (ICM) or trophectoderm (Fig. 5a)®". This has
led to the traditional view that the first fate decision toward ICM or
trophectodermisarandom process (Fig. 5b)®2. However, recent studies
have revealed molecular heterogeneity in the two- to four-cell-stage
embryos that influences the first cell fate decision in mice®***, which
leadsto analternative model of early commitment (Fig. 5¢). These stud-
iesrequire genetic manipulation to label specific genes, whichis not
applicable to human embryos. Below, we applied our high-resolution
method based on epimutationsto reveal the first fate decision in native
human embryos.

In early embryo development, cells undergo drastic global dem-
ethylation and remethylation*®, which could erase shared epimutations
between sister cells. To check whether our approach still worksin this
context, we applied MethylTree to four-cell-stage cells collected from
six mouse embryos by Guo et al.®>. MethylTree accurately identified
their lineage relationships by grouping cells according to their embry-
onicorigins (Fig. 5d,e; Q =1). MethylTree performed equally wellwhen
applied to mouse cells from other stages or to human embryonic cells
from previous publications (Fig. 5f,g and Extended Data Fig. 6a-d)*>*°.
At the four-cell stage, the four detected cells are correctly separated
into two groups, each with exactly two cells, consistent with their
division histories (Fig. 5d). Together, these results raise the possibility
thatepimutations on DNA methylation could be used to trace lineage
histories within the same developing embryo.

Next, we investigated the first fate choice encoded in the cell
lineages of a single human embryo, using the above human embryo
datasets collected by Qi et al.®®. We selected cells from day 5 or day 6
humanembryos, which have just adopted the fate of either trophecto-
dermor ICM. In the methylation similarity of day 6 cells from embryo

E49, cells are separated first into two major groups and further into
four subgroups (Fig. 5h). This reflects the two- and four-cell stage in the
division history, aswe have seenin our simulation of single-cell expan-
sion (Fig. 1d). The inferred lineage tree is robust and has high branch
support values from bootstrapping (Fig. 5i). Inferred descendants
from one four-cell-stage cell all adopted ICM fate, although another
two putative four-cell-stage cells also contributed to ICM (Fig. 5h,i).
In another four embryos, we also observed strong but variable early
commitment toward ICM at the four-cell stage (Fig. 5j,k and Extended
DataFig. 6e-g). We also observed early commitment toward trophec-
toderm. Therefore, our analyses suggest a model of stochastic early
commitment toward ICM or trophectoderm at the four-cell stage in
early human embryo development (Fig. 51).

Counting clones of HSCs in mice

In mice, HSCs arise through endothelial-to-hematopoietic transi-
tion (EHT) within the aorta-gonad-mesonephros (AGM) region in the
embryo. HSCs start to migrate to the fetal liver at around E11.5 and
expand rapidly there, before colonizing the bone marrow at around
the time of birth (Fig. 6a)*’. These EHT-derived HSC clones sustain
blood production for life. The clonal diversity of HSCs is foundational
to blood homeostasis and is also relevant in the aging process. Trans-
plantation assays estimated only 70 HSC precursors at E11.5 in mice®®.
Clonaltracking based onlow-capacity fluorescent labeling estimated 30
HSC clones in zebrafish®® and hundreds of blood progenitorsinmice’.
So far, the exact number of HSC clones in mice remains unknown due
to the lack of reliable and high-capacity lineage tracing approaches
to directly count HSC clones in vivo. We have previously generated a
dataset where we barcoded HSCs in DARLIN mice at E10, and profiled
HSCswith Camellia-seq at either E15.5 or adult stage (Fig. 6a)"*. Below,
we applied MethylITree to this dataset to estimate the number of HSC
clonesinmice.

Applying MethylTree to HSCs from adult mouse LL731, we recon-
structed cell lineages that agreed accurately with the ground-truth
lineage labels from DARLIN barcodes (Fig. 6b,c and Extended Data
Fig.7a; Q=0.90). We observed that each inferred methyl clone corre-
sponds roughly to one DARLIN barcode introduced at E10 (Fig. 6b-d;
ARI=0.87), when HSCs just begin to emerge. This suggests that the
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choices starting from the four-cell stage are illustrated. c, Amodel of the early
commitment. Otherwise, same as b.d, Heatmap of DNA methylation similarity
for cells from four-cell-stage mouse embryos, using public data from Guo et
al.%. The color bar indicates the embryonic origin of each cell, applicable toe,
fand Extended Data Fig. 6. e, Reconstructed lineage tree corresponding tod.

f, Reconstructed lineage tree for cells from day 6 human embryos using public
data from Qi et al.®. g, Accuracy of MethylTree-reconstructed lineages for

cells from different embryonic stages in mice and humans. Lineage accuracy is
evaluated in terms of separating cells by their embryonic origins. h, Heatmap

of DNA methylation similarity for cells from day 6 human embryo E49. The
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same color schemeis used ini-k and Extended Data Fig. 6e-g. i, Reconstructed
lineage tree corresponding to h. The support of each putative lineage branch is
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areindicated with a vertical bar on theright.j,k, Same as h (j) andi (k), but for
day Shuman embryo Eé6.1, A proposed model of stochastic early commitment. a,
Created using BioRender.com.

number of methylation-defined HSC clones corresponds to de novo
HSCs derived from EHT.

Due to sampling only 206 cells, most methyl clones are smallin
the LL731 dataset, with 82 of them having just one cell (that is, sin-
gleton), accounting for 40% of all the 206 observed cells (Fig. 6e). To
estimate the actual clone number from these partial measurements,
we simulated the process of sampling just 206 cells from a pool of HSC
clones that have empirically observed clone size distribution. At 270
starting HSC clones, this sampling scheme produced exactly 40% cells
that are singleton (Fig. 6f). We obtained consistent estimates of ~250
HSC clones across all three mice from both E15.5 and week 11 (Fig. 6g
and Extended Data Fig. 7b—-e). We further supported this estimate
by using a bulk DARLIN dataset from our previous study”. There, a
DARLIN mouse embryo wasinduced for lineage barcoding at E10, and
HSCs were profiled with bulk sequencing at week 4. After correcting
for low editing efficiency, we observed 312 DARLIN barcodes among
HSCs (Fig. 6h), which is comparable with our estimate. The DARLIN
estimate is likely inflated by the presence of background editing due
to stochastic, leaky expression of the Cas9-TdT protein. Together, we
demonstrated that epimutations on DNA methylation enable reliable
estimation of the EHT-derived HSC clone number in mice.

Discussion

Here, we developed MethylITree, a generic lineage-tracing tool based
onfrequent epimutations onsingle-cell DNA methylation. It achieved
high-resolution, noninvasive single-cell lineage tracing across multiple
cell types from key developmental stages, including early embryonic

stage, fetal stage and adult stage, thus covering both dynamic and static
periods of global methylation (Extended DataFig. 8a). MethyITree also
worksrobustly with alineage accuracy near100% for a population with
either similar or distinct cell types from mice and humans (Extended
DataFig. 8b). Agenomic coverage of just 2% may be sufficient for line-
agereconstruction with MethylTree, although 5% (-3 million reads per
cellwith scBS-seq) is better for robustness. Since the epimutation rate
is~0.001 per CpGsite per division, anepimutation onagiven CpG site
could be stable over hundreds of cell divisions. Therefore, epimuta-
tions in principle could track cell lineages throughout the lifespan of
anindividual.

We observed a robust performance across different choices of
genomic features in single-cell DNA methylation data. Standard prac-
tices use very large bins such as 100,000 bp (refs. 51,52). However,
this may average out lineage signals and lead to a poor result (Q = 0.2,
Extended Data Fig. 4e). Simply using all the ~30 million CpG sites,
although computationally expensive, gives superior accuracy (Fig. 4e
and Extended Data Figs. 1c and 8c). When averaging over a genomic
window around 500 bp, certain region subsets perform better than
using all 500-bp windows (Extended Data Fig. 8c). This is likely due
to enrichment of epimutations within these selected regions, which
could be reused in analyzing other data from similar systems, as we
didinthisstudy (Supplementary Table1). Predicting the mostinforma-
tive set of genomicregions for a given system would be aninteresting
future direction.

Inthisstudy, we demonstrated the feasibility of epimutation-based
single-cell multi-omic lineage tracing in complex differentiation
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systems. We generated single-cell multi-omic datasets for in vitro
differentiated hematopoietic cells for both mice and humans, each
derived fromasingle individual. Inboth datasets, MethylTree achieved
exactlineageinference (Q =1). Furthermore, integrating methyl clones
with transcriptome-based cell-state annotation recapitulated the dif-
ferentiation hierarchy inhematopoiesis. Last, in these in vitro systems,
we found that the genome-wide lineage signal is stronger than the
cell-type signal on DNA methylation (Figs. 3f and 4e), which echoes
our observation with FGCs (Fig. 2g). However, if the profiled popula-
tion involve highly distinct cell types, single-cell phenotypic data are
needed for removing cell-type signals in MethylTree inference. Such
phenotypic data can be obtained from joint single-cell RNA sequenc-
ing, orinsome cases with fluorescence-activated cell sorting (FACS).

We have applied our method to study fate choice in early embry-
onic developmentand the clonal diversity of blood. The first problem
requires resolving individual cell divisions that occurs during just a
few days. We found stochastic yet early fate commitment toward ICM
or trophectoderm at the four-cell stage in humans, which is consist-
ent with the report of early fate bias in mice®***, In mouse HSCs, the
methyl clones match the DARLIN barcodes introduced at E10, when
HSCsjust begin to emerge through EHT. One of the explanationsis that
only asmallfraction of the endothelial cells undergo EHT and become

HSCs”7?, which leads to an epigenetic bottleneck that increases the
methylation differences among those de novo HSCs. We used these
stark epigenetic differences to estimate HSC clone number in native
mice, and concluded with ~250 EHT-derived HSC clones.

We systematically compared our approach with other
lineage-tracing methods in humans, which is summarized in Extended
Data Fig. 9. As mentioned in the introduction, existing methods suf-
fer from limited temporal resolution and lineage accuracy. Besides,
calling somatic mutations with whole-genome DNA sequencing lacks
stateinformation of individual cells, and costs hundreds of dollars per
cell®?, In contrast, our method has unprecedented temporal resolu-
tion that distinguishes individual cell divisions, and achieves nearly
exactlineage inference across broad contexts. Our epimutation-based
lineage tracing is compatible with other modalities such as transcrip-
tome and chromatin accessibility, as demonstrated in Camellia-seq”
and snmCAT-seq”. Besides, single-cell DNA methylation (along with
other modalities) can be profiled in thousands of cells per week using
advanced barcoding approaches®>” or with robot automation’. With
these high-throughput methods, the cost can be reduced dramatically,
leading tojustafew dollars per cell for our recommended sequencing
depth of 5% genomic coverage. Our method also avoids the problem of
inefficient barcode labeling and capture, whichis typical inengineered
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lineage-tracing model systems>**">”, Taken together, our approach
provides a high-resolution, noninvasive, multi-omic and more afford-
able method forinvestigating relationships and molecular mechanisms
of diverse biological processes in humans and beyond.
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Methods

Serial clonal expansion of selected cell lines

Frozen HEK 293T cells (ATCC, CRL-3216) were thawed and passaged for
oncetorecoverahealthystate. Then,each HEK 293T cell was sorted by
FACSinasingle well of aflat-bottom 96-well plate. Cells were cultured
on growth media (DMEM +10% FBS) (ThermoFisher). After approxi-
mately 10 days in culture, cells from each well were dissociated by
5minoftreatment with 0.25% Trypsinat 37 °C (ThermoFisher, cat. no.
25200072) and sorted into two groups: one immediately sequenced
and the other plated in a new flat-bottom 96-well plate (Fig. 1g).

H9 embryonic stem cells (WICELL, CVCL_9773) were cultured
similarly for clonal tracking and expansion. H9 cells were dissociated by
ACCUTASE (STEMCELL, cat.no.07920) at 37 °C for 10 minand cultured
on Matrigel Matrix-plated wells (Corning, cat.no.354277) with the fol-
lowing medium: mTeSR1 Basal Medium, 20% mTeSR15x Supplement
and10% CloneR2 (STEMCELL).

Isolation of mouse hematopoietic progenitors

After euthanasia of a C57BL/6 mouse (8 weeks, female), bone marrow
from the femur, tibia, pelvis and sternum was isolated by crushing with
apestle and mortar to obtainall cells. Collected bone marrow cells were
filtered through a 40-pum strainer and washed in cold EasySep buffer
(STEMCELL, cat.no.20144).Red blood cellsand mature lineage cells were
depleted magnetically using the EasySep Mouse Hematopoietic Progeni-
tor CelllsolationKit (STEMCELL, cat.no.19856). Theresulting Lin fraction
was stained for Kit (CD117-PE, clone 2B8, Biolegend, dilution 1:100), Scal
(Ly6a-FITC, clone D7, Biolegend, dilution1:100) and Lin"Kit"Scal” (LK) cells
were isolated by FACS on Sony MA900 with a130 pM nozzle. All animal
procedures were approved by the Institutional Animal Care and Use
Committee of Westlake University (AP#23-093-WSW-2). All mice were fed
the normal diet at the Westlake University Laboratory Animal Resources
Center. The living environment of the animal laboratory was suitable,
with20-25 °Ctemperature, 30-70% humidity and a12-hlight-dark cycle.

Invitro lineage tracing of mouse hematopoietic progenitors
Sorted Lin"Kit*Scal™ cells were barcoded using spin infection (800g
for 90 min) in LARRY lentivirus concentrate' with Polybrene (Sigma)
and then plated in round-bottom 96-well plates. Cells were cultured
in media designed to support pan-myeloid differentiation, consist-
ing of StemSpan SFEM media (STEMCELL, 09650), IL-3 (20 ng ml™),
FLT3-L (50 ng mI™), IL-11 (50 ng mI™), IL-5 (10 ng mI™), TPO (50 ng ml™)
(Peprotech) and mSCF (50 ng ml™) and IL-6 (10 ng ml™) (R&D Systems).
Thetotal number of cells plated in each well varied from1,000t0 1,500,
and there were nine such wellsin parallel. After 6 daysin culture, cells
ineach well were dissociated by 5 min of treatment with 0.25% Trypsin
(ThermoFisher) and thengreen fluorescent protein positive (GFP*) cells
were sorted using FACS and sequenced immediately.

Isolation of Human CD34" hematopoietic progenitors

This study complies with all relevant ethical regulations, and
was approved by the Ethics Committee of Westlake University
(20240222WSWO0011) and conducted in accordance to the Declara-
tion of Helsinki protocol. Written informed consent was provided
by all participants. Human cord blood samples were obtained from
asingle donor (30 years of age, female) from Beijing Umbilical Cord
Blood Bank, without compensation. Cord blood mononuclear cells
were isolated by centrifugation in SepMate-50 (STEMCELL, 86450)
after adding Lymphoprep (STEMCELL, 07811) to the cord blood. Red
blood cells were depleted using RBC Lysis Solution (BasalMedia, S371JV)
and mature lineage cells were depleted magnetically using the EasySep
Human CD34 Positive Selection Kit Il (STEMCELL, 17856).

Invitro lineage tracing of human hematopoietic progenitors
Sorted CD34" cells were barcoded using spin infection (800g for
90 min) in LARRY lentivirus concentrate with Polybrene (Sigma) and

then plated in round-bottom 96-well plates. Cells were cultured in
media designed to support pan-myeloid differentiation, consisting
of StemSpan SFEM media (STEMCELL, 09650), and StemSpan CC100
(STEMCELL, 02690). The total number of cells plated in each well
varied from1,500 t0 2,000, and there were nine such wells in parallel.
After 13 days in culture, cellsin each well were dissociated by 5 min of
treatment with 0.25% Trypsin (Thermofisher), and then GFP* cells were
sorted using FACS and sequenced immediately.

Overview of MethylITree analysis

We first generated single-cell DNA methylation profiles from a given
biological sample using scBS-seq. Modified protocols can be used
to also obtain the cell type information. After preprocessing of the
single-cell DNA methylation data, we first selected informative genomic
regions for feature extraction. Then, for each cell, we computed the
average methylation fraction within each selected genomic region,
resultingina cell-by-region methylation rate matrix. Based on this rate
matrix, we calculated the Pearson correlation coefficient for each pair
of cells to obtain the pairwise cell-cell similarity matrix. Subsequently,
we corrected the correlation bias in this similarity matrix resulting from
measurement noise, and removed any effect related to cell-type differ-
ences, if thisis necessary. This similarity matrixis the core object of our
methylation-based lineage analysis. Finally, based on the corrected
similarity matrix containing only lineage information, we performed
downstream analyses such as lineage tree reconstruction and dimen-
sion reduction. The workflow of MethyITree analysis is illustrated in
Figs.1band 2m.

scBS-seq

We used scBS-seq*’ to profile DNA methylome in single cells with the
following modifications. In brief, individual cells were directly sorted
into 96-well plates containing 5 pl of cell lysis buffer (1x M-Digestion
Buffer (Zymo), 2 mg mI™” Proteinase K (Qiagen)). Samples were incu-
bated for 60 minat50 °Cand stored at—80 °C until required for library
preparation. EZ-96 DNA Methylation-Direct MagPrep Kit (ZYMO,
D5045) was then used to carry out bisulfite conversion of DNA. Library
amplification and purification were performed as described previ-
ously’. Primers used in library amplification are listed in Supple-
mentary Table 2.

Modified Camellia-seq

We modified the original Camellia-seq® protocol to jointly profile
the transcriptome, DNA methylome and LARRY lineage barcode in
single cells. In brief, individual cells were directly sorted into 96-well
plates containing the mild lysis buffer. Dynabeads in Myone Carbo-
xylic Acid (Invitrogen, 65011) were used to capture nuclei, and the
supernatant containing released RNA was transferred to a separate
96-well plate. The Dynabeads containing genomic DNA were used
to carry out scBS-seq to profile DNA methylome. The RNA part was
reverse transcribed and amplified for 15 cycles. The resulting com-
plementary DNA was split evenly, from which one halfwas processed
with a modified single-cell tagged reverse transcription sequenc-
ing (scSTRT-seq)*””” to obtain the single-cell transcriptome and the
other half was amplified at the target locus to generate the LARRY
lineage barcodes. Primers used in library amplification are listed in
Supplementary Table 2.

Preprocessing of scBS-seq data

Processing of DNA methylation data generated from scBS-seq was the
same as in our previous work", except for some minor changes
described below. In brief, we used Bismark (v.0.24.0) for read align-
ment, deduplication and extraction of DNA methylationinformation.
We expected cells with high quality to have low CpG methylation level
around the transcription startsite (TSS). To quantify this, we calculated
the Pearson correlation C;ssbetween mand |x|for each cell, where mis
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the average methylationlevel across all CpGsites atadistancexto TSS.
Cells with C;ss> 0.7 and having =5 x 10° distinct CpG sites were consid-
ered to pass quality control and used in downstream analysis.

Selection of informative genomic regions

To generate the cell-by-feature methylation rate matrix, we need to
decide which features or genomic regions to use (Fig. 1b). A simple
approachis to just use all the individual CpG sites, thus generating a
cell-by-CpG matrix for downstream analysis. This approach is highly
accurate (Fig. 4e and Extended Data Figs. 1c, 5b and 8c), but compu-
tationally also very expensive since there are more than 20 million
CpGsites.

Here, we discuss an alternative approach that divides the genome
into nonoverlapping bins or regions. In general, we found that using
more genomic regions often leads to better results (Extended Data
Fig. 1g). However, for a given system (for example, cells of a given
type or from a tissue), certain choices of genomic regions generate
more accurate cell lineages than others (Fig. 1n and Extended Data
Fig. 1f), because some regions are enriched with epimutations in a
cell-type-specific way. Below, we describe our approach for selecting
an optimal set of genomic regions for lineage reconstruction, which
can be reused to process new data from the same system, as we did
in analyzing the multiple early embryo datasets as well as the HSC
datasets (Figs. 5and 6).

First, we aggregated sparse DNA methylation profiles across all
cells to obtain a high-coverage pseudobulk profile for this particular
system. We divided the genome into nonoverlapping 500-bp bins,
computed the average DNA methylationrate mateach bin, and selected
the bins whose methylation rate satisfies my < m < m; (Extended Data
Fig. 1d), where m, and m, are two tunable parameters. This set of
selected regions, each with 500 bp, is referred to as ‘not merged’. We
then merged all the neighboring regions (Extended Data Fig. 1e). This
‘merged’ region set has a varying length distribution. In both the
merged and not merged region sets, we excluded regions observedin
<10% of cells.

To select the optimal set of regions for a particular system, we
systematically varied m, and m,, reported the corresponding lineage
reconstruction accuracy from downstream analysis, and selected
the best choice. We observed that the merged set of genomic regions
tended to show better performance (Fig. In). Furthermore, the merged
setrequired less computation because of the reduced region number,
whichimplies a smaller cell-by-region rate matrix. Therefore, we have
used the merged set of regions throughout this article, unless otherwise
stated. The selection parameters for each dataset analyzed in this study
are provided in Supplementary Table 1.

Generation of the similarity matrix

Given the selected genomic regions, we generated a cell-by-region
methylation rate matrix A, by computing the average methylation
fraction of cell i within genomic region x. To compute the similarity S;
between cellsiand j, we identified a subset of regions 2;;, where both
celliandjhad detected values (ranging between O and 1, but not NaN),
and computed the Pearson correlation between these two cellsonlyin
this shared subset ©2;:

S’J = CoerEQL,' (ALX’AJX) .

Our approach does not require any imputation on the observed
sparse DNA methylation data, which is important for preserving the
cell specific epimutations. We found that this approach accurately
extracts lineage relationships from sparse DNA methylation data,
and is robust to the heterogeneity of CpG coverage between cells
(Extended Data Fig. 1h). Besides, we found that Pearson correlation
performs better than Euclidean or cosine similarity in our experience
(Extended DataFig. 1i).

Similarity matrix correction

As mentioned in the main text, the Pearson correlation between two
observed variables will be lower than the actual value because measure-
ment noises make these two variables less connected. To see this,
consider x, =x +n,and y, =y + n,, where x, and y, are the observed
signals, xandy are the original signals and n, and n, are the correspond-
ing measurement noises. The observed Pearson correlation C(x,,y,)
satisfies the following relationship:

axy) , 0
7.2, Zi=

U(Xo,Yo) = =, i€ {xy}.

0;

Here, C(x,y) is the actual Pearson correlation between x and y. o;
and g; arethe standard deviations of the original and observed signal,
respectively. Therefore, Z; is the relative measurement noise of the
observedsignali. Alarger relative measurement noise leads to a smaller
observed Pearson correlation C(x,,y,). This is known in the literature
of statistics as attenuation®.

Since our similarity matrix Sis based on Pearson correlation, this
attenuation phenomenonleads to abiased estimation of the true simi-
larity between two cells. We exploit only relative similarity among these
cells to construct lineages. Therefore, if noise factor Z; has the same
value across all cells, the relative similarity would remain the same and
thereconstructed lineage treeis correct. However, if certain cells have
avery different noise factor Z;, which could arise from heterogeneity in
library preparation and sequencing, this will skew the relative similarity
and may lead to erroneous estimation of cell lineages. Below, we devel-
oped aniterative algorithm that only takes the raw correlation matrix
as input to correct the relative attenuation bias. This method should
workin other contexts that involve a correlation matrix.

Thekey isto find the actual noise factor Z,. We first initialized the
noise factor Z;for cell i from the similarity matrix S, by setting it as the
inverse square root of the maximum off-diagonal value of the ith row
in this matrix:

z=—1
max#,»Sij

Thisis then normalized by the average value of Zto mitigate con-
founding factors such as sequencing depth:

Z;

™ mean(2)’

Then, we generated a corrected similarity matrix S*as

We evaluated this corrected matrix $* through a cost function,

fc (5*) _ ooff—diagonal(S:)

ﬂoff—diagonal(s )

which computed the ratio between the standard deviation o and the
mean p of the off-diagonal values of S*. We then use gradient descent
to search for the optimal noise factor Zthat minimize the cost function
ofthe corrected S*matrix. Weiterate the above steps using this new $*
astheinput until convergence. Specifically,

Function Similarity_Correction (S)

Do #iterate for the convergence of the corrected S
Initialization: Z, = ——,i=1,...,n

\/ MaX;x;S;j

Normalization: Z; < Z;/mean(Z)

While £, (5*) - f. (S) <0:
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#Use gradient descent to find the optimal Zforagiven S
UpdateZ: 7, = 7, —e% ‘;iz =1..,n
Normalization: Z; — Z;/mean(Z)
Correct S matrix: S; = Z,5;Z ;.
If||S - S'||, < 5: Break # check L1 norm for convergence
UpdateS:S; < S
Return$

Here, € controls the step size of gradient descent and 6 controls
convergence. Both should be smallinimplementation. We used € = 0.01
and 6 = 0.01. In most datasets of our current study, we found that the
correlation-bias correction improves lineage reconstruction (Fig. 1i,j
and Extended DataFigs. 1liand 8b).

Removal of cell-type signals
Cell-type-specific DNA methylation signal may dominate the methylation
similarity matrix S. Instead of trying to identify ‘neutral’ genomicregions
that onaverage do not change their DNA methylation status during dif-
ferentiation, we sought tocomputationally remove these uninteresting
signalson the raw similarity matrix computed withgenomicregionsiden-
tified above. This approach requires cell-type information of each cell.
We hypothesized that the raw similarity matrix S can be decom-
posedtobeacell-type-specific similarity matrix 7and alineage-specific
similarity matrix L:

S=T+L.

Then, we computed the cell-type-specific similarity 7; between
cellsiand;. We denoted t;and ¢;as the corresponding cell type of cells
iandj, respectively. Wefirstidentified the set of cells (other thanj) that
share the same cell type as i:

020 = {kit, = t, k #Jj}.

In principle, the similarity set {Skj\k € Q?} could be used directly
to compute T; through averaging when there are many lineages and
cellsin a dataset. However, when there are only a few lineages or cells
in a dataset, we found it helpful to further exclude cell pairs (k, ) that
come from the same clone, as such cell pairs would have higher similar-
ity and therefore could inflate the estimate of T;. Since clonal informa-
tionis considered unknown, we used the following approach toidentify
such putative clonal pairs and improve the estimation of 7. First,
compute the mean similarity # and the standard deviation o of the
similarity set {Skj|k € Q?}. Then, generate amorerestricted set of cells
©;thatshare the same cell type as i:

‘Qi ={k|tk =ti,k#j, Skj Sﬂ+0}.

Similarly generate (2; as the restricted set of cells that share the
same cell type asj. Finally, we computed T; as the average similarity
among these cell pairs involving cell type t;and ¢;in the following way:

Lien, S5+ Lieq, Sik
! 192 + 192

Here, |22; and || give the total number of cells in set £2; and 2,
respectively. After T was computed, the lineage-specific similarity
matrix L was simply given by L = S— T. Applying this approach, we
successfully removed cell-type-specific differences and revealed actual
lineage information from both simulated and public single-cell
DNA methylation data (Fig. 2e,l and Extended Data Fig. 3a,c,g,h).

Rescaling of the similarity matrix

Before downstream analysis, we rescaled the similarity matrix S from
the above computation, so that its minimum value is O and the maxi-
mumi s 1inthe off-diagonal entries:

§; = min ($y)

Sj = -
' max (Sy) — min (S;)

We fixed the diagonal entries tobe 1 afterward: S; = 1.

Lineage tree reconstruction

Tobuild alineage tree, we need to convert the similarity matrix Sinto
a distance matrix D to use existing phylogenetic tree reconstruction
algorithms such as UPGMA. For this, we generated the distance matrix
with D; =1-§;. Then, we set the diagonal term D; = 0. We applied
UPGMA to this distance matrix to infer the lineage tree. We used the
inferred lineage relationships between cells to order the heatmap of
the corresponding similarity matrix. Therefore, the heatmapillustrated
both the similarity matrix and the inferred lineage relationships.

To estimate thereliability of the inferred lineage tree (referred to
as I,), we randomly sampled 80% of the selected regions in the cor-
responding cell-by-region methylation rate matrix A,, and rerun the
remaining MethylTree steps to obtain a new tree (denoted as I7). We
repeated this process 100 times to obtain a long list of sampled trees
{I}.Foreachsubtree r'* from the original tree I, weiterated through
{I}and checked whether a ‘similar’ subtree r'* can be found in ;. By
‘similar’, we specifically meant that both subtrees were composed of
the same group of cells, regardless of their structural organization
within their corresponding subtrees. We reported the fraction of such
‘similar’ occurrencesacross allthe100 sampled trees {I;}as the support
value of the observed subtree ¥, which was displayed near the root of
each subtree of 1, (Fig. 5i,k and Extended Data Fig. 6e-g). These sup-
portvalues range from O and 1. A higher support valueimplies that cells
belonging to the corresponding subtree are more likely clustered
together in the actual lineage tree of all the cells.

Methyl-clone identification

We used the support values computed from the previous step toiden-
tify putative clones, which we named methyl clones. To add additional
information for cloneidentification, for each subtree we also computed
awithin-tree similarity score, whichis defined to be the 50th percentile
of the off-diagonal similarities between cells within this subtree. We
expected thatintra-clone similarity would be higher than that between
randomly selected cells. Starting from the root of the tree, we identi-
fied putative clones that satisfied two criteria: (1) a subtree with sup-
portvalues above apreset support threshold; and (2) asubtree whose
within-tree similarity scoreis larger than a preset similarity threshold.
In this study, we set the similarity threshold to be the 75th percentile
of the off-diagonal similarities among all cells, and the support value
threshold is 0.95. We evaluated the accuracy of these methyl clones
by computing the adjusted rank index using the ground-truth lineage
barcode as the reference (Figs. 3i and 6b and Extended Data Fig. 7b).

Dimension reduction

We performed dimension reduction on the similarity matrix S using
the function sklearn.manifold.spectral_embedding with a parameter
n_components. Theresulting spectral components were used to gener-
ateak-nearest neighbors graph with scanpy.pp.neighbors function that
haveatuning parameter n_neighbor. Finally, we performed uniform man-
ifold approximation and projection for dimension reduction (UMAP)
using the scanpy interface scanpy.tl.umap with aparameter min_dist to
generate atwo-dimensionalembedding. Denoting the involved param-
eters as this triplet: (n_components, n_neighbor, min_dist), we used
the parameter set (10,7,0.4) for Extended Data Fig. 1h, (10,10,0.5) for
Extended DataFig. 3f, (10,10,0.9) for Fig. 3k and (10,40,0.5) for Fig. 6¢,d.

Accuracy of lineage reconstruction
Thelinear ordering of leaf nodes in the reconstructed lineage tree can
be used to evaluate the accuracy of lineage reconstruction, when the
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ground-truth lineage or clonal label is available. We expect that cells
from the same clone are more similar and appear in the same subtree.
Therefore, these clonal cells should be grouped together in the linear
ordering of the leaf nodes. Motivated by this expectation, we devised
the following metric Qto quantify how close cells from the same clone
arearranged in this lineage ordering:

_ 8r—1
o[z

where g, is the maximum number of cells from clone k that are grouped
togetherintheinferred lineage ordering, n,isthe total number of cells
from clone k and M is the total number of clones. Only clones with at
least two cells were used in this evaluation, and we excluded cells with-
outobserved clonallabels. The ‘-1’in this equation ensures that accu-
racy score reaches abaseline of zero when none of the clones have more
than one cell placed together. Therefore, Q ranges between O and 1,
with 1 corresponding to the best scenario where all cells are grouped
by their clonal origins.

To gain abetter understanding of this metric, consider the accu-
racy of arandomized ordering. Specifically, suppose that we have
M clones, each with two cells. Averaging over 100 independent simula-
tions, we have Q = 0.18 for M= 5, Q = 0.096 for M =10, Q = 0.05 for
M = 20.Therefore, anaccuracy of Q > 0.8 should be considered avery
high accuracy. Wereported the accuracy of randomized lineage order-
ing associated with each analyzed dataset in Supplementary Table 1
and Extended Data Fig. 8b.

Coarse-grained methylation lineages

Apart fromsingle-celllineage treeinference, we alsoinferred a phylo-
genetic relationship at a higher level by aggregating individual cells
fromsimilar cell types or clones (Fig. 11). Using [to denote agroup label,
be it a cell type or clone annotation, we extracted the subsimilarity
matrix S;with cells fromgroup /and /', computed the median value of
the off-diagonal elements and assigned it to the coarse-grained simila-
rity S;. Then, we applied UPGMA to the coarse-grained similarity S,
togenerate alineage tree, as described above.

Analysis of single-cell transcriptomic data

Preprocessing of single-cell transcriptomic data from our modified
Camellia-seq protocol is identical to the original Camellia-seq anal-
ysis®. For dimension reduction, we selected highly variable genes,
removed cell-cycle effects, used the top 40 principal components
to obtain a k-nearest neighbors graph with n_neighbors =15 and run
UMAP at min_dist = 0.3 to generate the two-dimensional embedding.

Analysis of LARRY barcode data

We modified the original LARRY bioinformatic pipeline developed by
Weinreb et al.™. Since the sequencing data was generated through a
plate-based protocol, we preprocessed data from each 96-well plate
separately. After initial extraction of the cell barcode, UMI barcode
and LARRY lineage barcode for each read from the fastq files, we first
excluded reads that do not have the expected cell barcode or do not
conformto the expected LARRY barcode structure. To correct the PCR
andsequencingerrorsinthe LARRY lineage barcode, LARRY barcodes
supported by fewer than eight reads were discarded. We grouped the
remaining LARRY barcodes within a Hamming distance of ten (note
thata LARRY barcode has 28 variable nucleotides), and corrected them
toward the most dominant LARRY barcode in this group. To further
avoid the scenario where artificial cell barcodes associated with a
LARRY clone were generated through PCR and sequencing errors, we
excluded cell barcodes with arelative read fraction <1% (relative to the
most abundant cell barcode in this clone) among all the cell barcodes
sharing thesame LARRY cloneID. After preprocessing, we used the lat-
est version of CoSpar®*® (v.0.3.3) to generate clonal heatmap (Fig. 3d),

visualize individual clones on the transcriptomic embedding (Fig. 3e)
and compute the clonal coupling heatmap as well as the differentiation
hierarchy (Extended Data Fig. 4g).

Clone identification from DNA methylation

We expect that HSCs arising from the same EHT-derived clone would
share much higher methylation similarity than two random cells, and
therefore would formasubtree with strong support values. We identi-
fied putative methyl clones as described above. Next, we inferred the
actualnumber of HSC clones from the observed putative clones at the
selected support threshold. Due to observing only 100-200 HSCs, it
is highly likely that some HSC clones were not observedin our data. We
computed the singleton cell fraction ¢ for each dataset, defined as the
fraction of observed cells with no sister cells jointly detected from the
same clone (Fig. 6e). Toinfer the actual HSC clone number, we gener-
ated Msynthetic HSC clones that have the empirically observed clone
size distribution, sampled N cells with replacement from this synthetic
HSC pooland calculated the singleton cell fraction ¢(M, N). Since LL731
is the largest dataset and therefore has the most reliable clone size
distribution across our datasets, we used its distribution as the empiri-
cal clone size distribution in our simulation. For each dataset k from
{LL731, LL653E1, LL653E6}, we set sampled cell number N to be the
observed cell number N, in this dataset, and inferred the actual clone
number as M, such that ¢ (M,, N,) = ¢, where ¢, isthe observed single-
ton cell fraction in this dataset (Fig. 6f,g and Extended Data Fig. 7d,e).
Werepeated the simulation 100 times to estimate the standard devia-
tion of the simulated singleton cell fraction ¢. We obtained highly
consistent estimates of ~250 HSC clones across three datasets from
two stages (that s, fetal liver and adult stage) (Fig. 6g).

HSC clone number estimation from bulk DARLIN data

Bulk DARLIN data were preprocessed according to our previous study®.
We counted the total number (denoted U) of unique DARLIN barcodes
observed in a mouse, excluding the unedited barcode. DARLIN
sequencesin some of the cells were not edited during induction, which
could haveled tounder-estimation of the total HSC clones. To correct
for this, we computed the fraction (denoted B) of DARLIN UMIs that
were edited and estimated the expected DARLIN clone number to be
U/B (Fig. 6h). As mentioned in the main text, background editing due
to leaky expression of Cas9-TdT could inflate this HSC clone estimate
from DARLIN mice.

Simulation of single-cell expansion

To evaluate the capacity of DNA methylation epimutations to recon-
struct human cell lineage histories at a given genomic coverage, we
simulated DNA methylation epimutations onalarge array of 29 million
CpG sites (Fig. 1d-f). For each CpG site, we used O to represent the
unmethylated state and1to represent the methylated state. An epimu-
tation occurswhen 0 — 1or 1 - 0, atafrequency of 0.001 per site per
celldivision, unless otherwise stated. Starting froma single cell, where
50% of the CpG sites were randomly methylated initially, we simulated
erroneous replication of DNA methylation for seven cell divisions,
resulting in 128 cells. We profiled these cells at 5% genomic coverage,
unless otherwise stated. To simplify the estimation of lineage recon-
structionaccuracy, we introduced synthetic clone barcodes at the stage
of16 cells produced after the first four divisions, so that each clone has
exactly eight cells. We reported the MethylTree accuracy for these 16
clones using the metric Q described above, after averaging over ten
independent simulations (Fig. 1f).

To add more realistic complications to the simulation, we first
considered the existence of epimutations without cell divisions. To
simulate this, we randomly mutated a given fraction of CpG sites in
eachofthe128 cells after the clonal expansion and reported the Methyl-
Tree accuracy (Extended Data Fig. 1a). Second, we adapted the above
simulation and modeled epimutation on a diploid genome with two
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independent copy of DNA molecules, each with a CpG site-specific
epimutation rate sampled from a uniform distribution with amaximum
value A. In addition, each observed CpG status is obtained from sam-
pling once onthe same CpGsite from either of the two DNA molecules.
Afterward, werandomly selectonly afraction of these CpGsites asthe
final observations (Extended Data Fig. 1b).

Simulation of stem-cell expansion and differentiation

Totest MethylTree ininferring lineages from a mixture of different cell
types, we simulated DNA methylation changes during stem-cell expan-
sionand differentiation (Fig. 2a—e). There are three cell types: stemcell,
diff A, and diff_B. The latter two are differentiated cell types. At each
generation, each cell divides once regardless of their cell identities.
Each of the two daughter cells, ifin the stem-cell state, has 20% chance
to become either diff_A or diff_B after division. Each cell type has its
specific DNA methylation pattern occupying thefirst half of the genome,
withthe remaining 50% of the genome being neutral or lineage-specific.
We denote this cell-type-specific region as . For simplicity, we set the
methylation status on % as [0,1,0,1,0,1,...]1 for a stem cell (which alter-
nates between and 0 and 1), uniformly O for diff_A and uniformly 1 for
diff_B. When there is a transition from one cell type to another (for
example, when astem cell differentiates to become diff_A), the methyla-
tion patternonregion R isreset to adopt the patternin the new cell type.
At each division, cells accumulate epimutations across the genome,
including ®, at arate of 0.001 per CpG site per cell division.

We simulated ten founder cells, each initialized as a stem cell.
These founder cells adopt a similar DNA methylation pattern on the
second half of the genome that is neutral to cell differentiation, but
with 5% differences. There are 10° CpG sites in this simulated genome.
Starting from these ten founder cells, we simulated five generations of
celldivision and differentiation, resulting in ten clones, each comprised
of 32 cells with three cell types.

In Extended Data Fig. 3, to add more realistic complications, we
varied the proportion a of the genome that has lineage-specific CpG
sites, with the remaining (1 — a) being cell-type specific (Extended Data
Fig. 3b,c). We also modeled variation of the epimutation rate across
the genome by sampling from a uniform distribution with the maxi-
mum rate being A, and considered the effect of sampling different
proportion of the CpG sites (Extended Data Fig. 3a).

Genomiclocalization of clone-specific CpG sites

The clone-specific CpG sites are identified from two largest clones in
our in vitro mouse blood dataset (Extended Data Fig. 4i). Each quali-
fied clone-specific CpG site should be observed in more than five cells
in each clone, and its mean methylation rate within a clone should be
<0.05 or >0.95 in one clone and within [0.4,0.6] in another clone. To
compute the one-sided Pvalue for the N observed clone-specific CpG
sites, we generated the nulllocalization data by randomly sampling N
CpGsitesamong all observed CpG sites and repeated it for 100 times.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The sequencing data for human blood has been submitted to the
Genome Sequence Archive database under the accession number
HRA008624. Other sequencing data generated in this study have been
submitted to NCBI GEO, with the accession number GSE262580. The
methylation rate matrix associated with selected genomic regions for
eachanalyzed datasetin our paper, along with each sample metadata
and processed human blood dataset,is available viafigshare at https://
doi.org/10.6084/m9.figshare.27288630 (ref. 78). The accession num-
ber and analysis parameters for each analyzed dataset in this study are
availablein Supplementary Table 1.

Code availability

Scripts for data preprocessing are available at https://github.com/
ShouWenWang-Lab/Preprocessing. MethylTree code is available at
https://github.com/ShouWenWang-Lab/MethyITree. To reproduce
our analysis, please check out our jupyter notebooks at https://github.
com/ShouWenWang-Lab/MethylTree_notebooks. A web portal of
MethylTree analysisis available at https://wangshouwen.lab.westlake.
edu.cn/app/methylserver.
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Extended Data Fig. 1| See next page for caption.
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Extended Data Fig. 1| Systematic characterization of MethylTree performance
inahomogeneous population. a, b, Analysis on simulated single-cell expansion
with more realistic features. a, The impact of division-free CpG mutations on
lineage inference accuracy. After simulated clonal expansion as in Fig. 1d, we
randomly mutated a given fraction of CpG sites in each of the 128 cells. b,
Heatmap of lineage accuracy as a function of CpG coverage and the variation of
epimutation rate controlled by the parameter A. Compared with Fig. 1f, we
modeled epimutation on a diploid genome with a CpG-site specific epimutation
rate sampled from a uniform distribution with a maximum value A.Each
observed CpG statusis obtained from sampling once on the same CpG site from
either of the two DNA molecules. c-j, MethylTree analysis of a clonal expansion
dataset of human HEK 293T cells. ¢, Heatmap of the similarity matrix computed
with the cell-by-CpG matrix, without binning. d, Schematic of region selection.
Non-overlapping 500-bp genomic bins with an intermediate methylation rate

between myand m; were selected. e, Merging neighboring bins after selection in
d. This procedure was used in analyzing all datasets in this article. f, Heatmap of
MethylTree lineage accuracies on the 293T dataset using ‘merged’ genomic
regions selected at different thresholds according to e. The parameters indicated
on this plot (m, = 0.5, m, = 0.9) were used to generate Fig. 1i-k. g, A scatter plot
showing the number of genomic regions associated with each selection and the
corresponding accuracy of MethylTree-inferred lineages, using the data fromf.
The selection parameters (m,, m,) for some data points are highlighted. h,
Number of detected CpG sites per cell on the methylation embedding of 293T
cells. i, Lineage accuracy using different metrics to compute the cell-cell
similarity. With Euclidean distance matrix X, we converted it to a similarity with
1-X/max(X), where max(X) is the largest value in this matrix.j, Similarity
heatmap ordered with the phylogenetic tree inferred from the neighbor-joining*®
(NJ, left) or FastME® (right) method.

Nature Methods


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-024-02567-1

a b HO: Lineage accuracy
(merged)
1.0
H9 cells
— (Mo, my)
Clonal Selected: (0.1, 0.4) 0.8
expansion =03
° 0.6
I ~ @ < 0.
T \ \_ L 5 0.
Clone_0 Clone_1 Clone_2 Clone_3 Clone_4 5 0.4
N 5
' T
scBS-seq -0.2
0.71 0.72 0.83 0.76 0.74 0.64 0.75 0.58 0.51)
0.62 0.56 0.64 0.71 0.50 0.59 0.52 0.58 0.64 [J:)
v -0.0
0.00.10.20.30.40.50.60.70.80.9
Lower threshold: mg
d e Patient: CRC11

(Bian et.al., 2018)

MP1 7
MP2

MP(n)

ML1
ML2

L Single cell
ML(n)

DNA methylation,
gene expression

Lt and inferred CNV

LI‘_IZ
LN(n)

PT1
PT2
PT(n) ./

Primary Tumor
[ (PT) ]

Analysis of an in-house clonal expansion dataset of H9 human embryonic stem cells

Analysis of a public human colorectal cancer dataset (Bian et.al., 2018)

ineage accuracy Q=1

c Raw similarity matrix

After correlation bias correction

M Clone_ 0
¥ Clone_1
M Clone_2
B Clone_3
W Clone_4

Location
CNV  Location /
~_
A2 LN1
A5 PT1
W PT3
1 PT4
NC
PT2
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of MethylTree lineage accuracies on the H9 dataset, similar with Extended Data
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after (right) correlation-bias correction. The color bar shows the actual clonal

identify of each cell. d-f, Lineage inference from human colorectal cancer. Data is
obtained from patient CRC11in Bian et al.*. d, Schematic of tissue sampling and
cell profiling, created using BioRender.com. e, Heatmap of the cell-cell similarity
matrix computed from single-cell DNA methylation. Here, A1-A6 and B were
inferred cancer lineages based on copy number variations (CNV) in the original
analysis by Bian et al. NC marks the normal cells. f, Lineage phylogenetic tree
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Extended Data Fig. 4 | Analysis of the single-cell multi-omic blood dataset
from mouse. a, Heatmap showing the expression of cell-type-specific marker
genes (columns) in each annotated cell types (rows) in Fig. 3c. Expression
values were column-wise normalized by the highest value in each column. b,
Bar plot of cell counts of each cell type identified in this dataset. ¢, Histogram of
LARRY clonessizesin this dataset. d, Heatmap of MethylITree lineage accuracies
associated with different region choices on these blood cells. We highlight

the parameters used to generate Fig. 3f. e, Lineage accuracy computed with
non-overlapping bins at different sizes, with either correlation-bias correction
or not. f, Box plot of lineage accuracies at different genomic coverages. At each
coverage, results from all genomic choices are shown. See Fig. 1n for box plot

description. g, Heatmap of clonal coupling scores computed from the observed
LARRY lineage barcodes. h, Pseudobulk DNA methylation profiles on genomic
regions not specifically related to hematopoiesis. Otherwise, same as Fig. 3m.1,
Fraction of clone-specific CpG sites in different genomic contexts. These were
differentially methylated CpG sites between the two largest clones in this dataset.
WCGW: asolo CpG site franked by either A or T; CGI: CpGislands; Prom_CGI:
CGl-enriched promoter region (within 2000 bp from transcription starting site);
Prom_nonCGl: CGl-depleted promoter region; Genebody: gene body region;
LINE: long interspersed nuclear elements; LTR: long terminal repeats. Results
from randomly sampled CpG sites are also shown. **, one-sided p-value < 0.01,
obtained from directly simulating the null distribution. See Methods.
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Extended Data Fig. 7| MethylTree analysis on mouse HSCs. a, Heatmap of
MethylTree lineage accuracies associated with different region choices on HSCs
from mouse LL731. We highlight parameters used to generate Fig. 6b, and also the
choice usedin our previous study®. The same set of genomic regions was re-used
inanalyzing the remaining HSC datasets in Fig. 6 and this figure. b, Bar plot of
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inference based on the observed singleton cell fraction (same as Fig. 6f). e, HSC
clone number inference on mouse LL653E6. Otherwise, same as d.
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Reporting on sex and gender The human cord blood donor included in the study was a 30-year-old female. No chromosomal or developmental
abnormality was reported.

Population characteristics Only a 30-year-old female was included in this study.

Recruitment The human cord blood samples were obtained through a collaboration with Beijing Umbilical Cord Blood Bank. Written
informed consent was provided by all participants..

Ethics oversight This study complies with all relevant ethical regulations and was approved by the Ethics Committee of Westlake University
(20240222WSW0011) and conducted in accordance to the Declaration of Helsinki protocol.
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manuscript Methods for further details).
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Antibodies used PE anti-mouse CD117 (c-Kit) (Biolegend, Cat# 105807),
FITC anti-mouse Ly-6A/E (Sca-1) (Biolegend, Cat# 108105)

Validation All antibodies used in the study have been validated by the manufacturers for the application and species relevant for this
manuscript.
PE anti-mouse CD117 (c-Kit) - The reactivity of the ab was validated by the manufacturer and results shows on https://
www.biolegend.com/en-us/products/pe-anti-mouse-cd117-c-kit-antibody-75
FITC anti-mouse Ly-6A/E (Sca-1) - The reactivity of the ab was validated by the manufacturer and results shows on https://
www.biolegend.com/en-us/products/fitc-anti-mouse-ly-6a-e-sca-1-antibody-227
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Cell line source(s) HEK293T (ATCC, CRL-3216), H9 human embryonic stem cell (WICELL, CVCL_9773)
Authentication Cell lines derived from credible sources. No authentification done
Mycoplasma contamination All cell lines tested negative

Commonly misidentified lines  no commonly misidentified cell lines were used in the study
(See ICLAC register)

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals C57BL/6 mice (8 weeks, female)
Wild animals No wild animals were used in the study.
Reporting on sex For focused on the cellular research, no sex were considered in study.

Field-collected samples  No field collected samples were used in the study.

Ethics oversight All animal procedures were approved by the Institutional Animal Care and Use Committee of Westlake University (AP#23-093-
WSW-2).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Methodology

Sample preparation The Lin- Cells were stained with antibodies Kit (CD117-PE, clone 2B8, Biolegend, dilution 1:100) and Sca-1 (Ly6a-FITC, clone
D7, Biolegend, dilution 1:100) for 30 min at 4 C, protected from light, and washed once in 1 mL of cold DPBS. After final
centrifugation (5 min at 300 g, 4 oC) cells were resupend in 0.5 mL DPBS with 2% FBS and filtered through a 40 uM cell
strainer before preceeding with FACS-sorting. Lin-Kit+Scal- (LK) cells were isolated by FACS on Sony MAS00 with a 130uM
nozzle.
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