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Inferring energy dissipation from violation of the fluctuation-dissipation theorem
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The Harada-Sasa equality elegantly connects the energy dissipation rate of a moving object with its measurable
violation of the Fluctuation-Dissipation Theorem (FDT). Although proven for Langevin processes, its validity
remains unclear for discrete Markov systems whose forward and backward transition rates respond asymmetrically
to external perturbation. A typical example is a motor protein called kinesin. Here we show generally that the
FDT violation persists surprisingly in the high-frequency limit due to the asymmetry, resulting in a divergent FDT
violation integral and thus a complete breakdown of the Harada-Sasa equality. A renormalized FDT violation
integral still well predicts the dissipation rate when each discrete transition produces a small entropy in the
environment. Our study also suggests a way to infer this perturbation asymmetry based on the measurable
high-frequency-limit FDT violation.
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I. INTRODUCTION

Recent development of technology has allowed direct ob-
servation and control of molecular fluctuations, thus opening
up a new field to explore nanomachines that operate out of
equilibrium [1–3]. An important approach to investigate a
stochastic system is to study both its spontaneous fluctuation
and the elicited response to perturbation. For the recorded
velocity ẋt of a particle (with xt being its position at time t), its
spontaneous fluctuation is captured by the temporal correlation
function: Cẋ(t − τ ) ≡ 〈(ẋt − 〈ẋ〉ss)(ẋτ − 〈ẋ〉ss)〉ss with 〈·〉ss
denoting the average over the stationary ensemble. On the
other hand, the velocity response to a small external force h is
captured by the temporal response function determined from
the functional derivative Rẋ(t − τ ) ≡ δ〈ẋt 〉/δhτ . For equilib-
rium systems, these two functions are closely related through
the fundamental Fluctuation-Dissipation Theorem (FDT) [4],
which in the Fourier space reads

C̃ẋ(ω) = 2T kBR̃′
ẋ(ω), (1)

where prime denotes the real part, T is the bath temperature,
and the Boltzmann factor kB is set to be 1 hereafter. Violation of
the FDT has been widely used to characterize non-equilibrium
systems, including glassy systems [5,6], hair bundles [7], and
cytoskeleton networks [8].

The generalization of the FDT for systems in non-
equilibrium steady state has been studied intensively [9–13].
In particular, for systems described by Langevin equations,
Harada and Sasa have shown that the violation integral of the
FDT gives the dissipation rate q̇ for the observed variable x

[14–16]:

I ≡ 〈ẋ〉2
ss +

∫ ∞

−∞
[C̃ẋ(ω) − 2T R̃′

ẋ(ω)]
dω

2π
= q̇

γ
(2)
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with γ the friction coefficient. The Harada-Sasa (HS) equality
has been applied successfully to infer the energetics of F1-
ATPase, a rotary motor protein [17,18]. Our recent study
demonstrated that it is also useful for inferring hidden dissipa-
tion of timescale-separated systems when having access to only
slow variables [19,20]. Other related theoretical generalization
can be found in [21–24].

Although the HS equality seems very general, its validity
remains unclear for discrete Markov processes. In this context,
Lippiello et al. have shown that the HS equality is recovered
when entropy production in the environment is small for each
jump [25]. A central assumption there is that the forward and
backward transition rates respond symmetrically to the external
perturbation. However, this symmetry is violated for molecular
motors, according to recent experimental and modeling work
[26–31]. Furthermore, various forms of generalized FDT that
go beyond symmetric perturbation reveal non-trivial depen-
dence on the asymmetry [10,32,33], in sharp contrast with the
simplicity of the HS equality.

Here, we clarify the connection between dissipation rate
and violation of the FDT for Markov systems with per-
turbation asymmetry. We find surprisingly that the FDT is
violated even in the high-frequency limit, leading to a di-
vergent FDT violation integral, although the dissipation rate
remains finite. We propose two renormalization schemes to
remove the divergence of the FDT violation integral, and
show that the renormalized integrals well predict the dis-
sipation rate when the entropic change per jump is small.
The main results are illustrated with a minimum model for
kinesin.

II. GENERAL MARKOV SYSTEMS

Consider a general Markov process with N states. The
transition from state n to state m (1 � n,m � N ) happens with
rate wm

n . The probability Pn(t) at state n and time t evolves
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according to the following master equation:

d

dt
Pn(t) =

∑
m

MnmPm(t), (3)

where M is assumed to be an irreducible transition rate matrix
determined by Mnm = wn

m − δnm

∑
k wk

n with δnm being the
Kronecker delta. The j th left and right eigenmodes, denoted
as xj (n) and yj (n), respectively, satisfy the characteristic
equations

∑
m Mnmxj (m) = −λjxj (n) and

∑
m yj (m)Mmn =

−λjyj (n). Here, the minus sign is introduced to have an
“eigenvalue” λj with a positive real component [34]. These
eigenvalues are arranged in the ascending order by their
real part, i.e., Re(λ1) � Re(λ2) � · · · . This system has a
unique stationary distribution P ss

m that satisfies
∑

m P ss
m = 1.

For the ground state associated with λ1 = 0, y1(n) should
be constant and x1(m) be proportional to P ss

m . Here, we
fix y1 = 1 and x1(m) = P ss

m . For this system, we can al-
ways find a set of eigenmodes that satisfy the orthogonal
relations

∑
m xj (m)yj ′(m) = δjj ′ and completeness relations∑

j xj (n)yj (m) = δnm, which we use in the following analysis.
The left and right eigenmodes are coupled for equilibrium sys-
tems: xj (m) = yj (m)P eq

m . This is not true for non-equilibrium
systems.

We introduce an external perturbation h that modifies the
transition rates to be

w̃n
m = wn

m exp

[
h

(
θm
n + 1

2

)Qn − Qm

T

]
. (4)

Here, Qm is a variable conjugate to perturbation h, and
θm
n parametrizes the asymmetry of the transition rates in

response to external perturbation. θm
n may vary for different

transitions, but should satisfy θm
n = −θn

m. θm
n = 0 corresponds

to the symmetric case. We are interested in the correla-
tion and response spectrum of the velocity observable Q̇t =
dQnt

/dt . The strategy is to project these spectra onto the
eigenspace. We introduce the projection coefficients: αj ≡∑

n Qnxj (n), βj ≡ ∑
n Qnyj (n)P ss

n , and φj ≡ ∑
n Bnyj (n),

where Bn captures the effect from perturbation, and is
given by Bn = ∑

m(θm
n Jm

n + Am
n )(Qn − Qm)/T . Here, Am

n ≡
(wm

n P ss
n + wn

mP ss
m )/2 is the dynamical activity between state n

and m, while Jm
n ≡ wm

n P ss
n − wn

mP ss
m is the net flux from state

n to m. Then, we obtain

C̃Q̇(ω) =
N∑

j=2

2αjβjλj

[
1 − 1

1 + (ω/λj )2

]
, (5a)

R̃Q̇(ω) =
N∑

j=2

αjφj

[
1 − 1 + i(ω/λj )

1 + (ω/λj )2

]
(5b)

with i the imaginary unit. We have used this framework
previous in the context of symmetric perturbation [19,20]. See
Appendix A for more details.

Let us consider the high frequency limit first. According
to Eq. (5), we have C̃Q̇(∞) = ∑N

j=2 2αjβjλj and

R̃Q̇(∞) = ∑N
j=2 αjφj . Following the definitions of these

coefficients, we obtain

C̃Q̇(∞) =
∑
n,m

(Qn − Qm)2Am
n , (6a)

R̃Q̇(∞) = 1

2T

∑
n,m

(Qn − Qm)2
(
θm
n Jm

n + Am
n

)
. (6b)

In obtaining Eq. 6(a), we note that
∑

j xj (n)λjyj (m) =
−Mnm, and that any summation over the full state space is
invariant under the switching of the label, i.e., n ↔ m. Because
θ is introduced only at the stage of perturbation here, the
correlation spectrum does not depend on θ . More specifically,
C̃Q̇(∞) only depends on the activity Am

n , while R̃Q̇(∞) has
an additional dependence on the flux Jm

n in the presence of
an asymmetric load-sharing factor. The FDT violation in the
high-frequency limit is then

V∞ ≡ lim
ω→∞[C̃ẋ(ω) − 2T R̃′

ẋ(ω)] = −
∑
n,m

θn
mJ n

m(Qm − Qn)2.

(7)

It vanishes for any equilibrium systems (J n
m = 0) or non-

equilibrium systems with symmetric perturbation (θn
m = 0).

Otherwise, a finite FDT violation persists even in the high-
frequency limit, which is quite surprising. When the transitions
are dominated by futile back-and-forth jumps, i.e., |Am

n | 	
|Jm

n |, the system has a relatively small high-frequency-limit
violation, i.e., |V∞/C̃Q̇(∞)| 
 1. This will be the typical case
when individual jumps produce a small entropic change in the
environment, as will be illustrated later.

The direct consequence of a non-zeroV∞ is a divergent FDT
violation integral I and thus complete breakdown of the HS
equality (as the dissipation rate still remains finite). To get rid
of divergence, we first subtractV∞ from the violation spectrum
and then introduce the renormalized FDT violation integral:

I∗ ≡ 〈Q̇〉ss +
∫ ∞

−∞
[C̃Q̇(ω) − 2T R̃′

Q̇
(ω) − V∞]

dω

2π
. (8)

A more practical scheme of renormalization will be dis-
cussed towards the end. Combined with Eq. (5), we obtain
I∗ = ∑

j λjαj (T φj − βjλj ).1 Using the definitions of these
coefficients and summing over all eigenmodes, we obtain (see
Appendix A)

I∗ =
∑
n,m

(
ν̄n + ν̄m

4
+ ν̄n − ν̄m

2
θm
n

)
Jm

n (Qm − Qn), (9)

where ν̄n ≡ ∑
m wm

n (Qm − Qn) is the average change rate of
Qt when it starts from state n. Evidently from this equation,
the FDT violation only comes from transitions that change the
observable Qn, as it should, and it is proportional to the local
net flux Jm

n , the signature of non-equilibrium systems. Below,
we discuss the structure of V∞ and the connection between I∗
and the dissipation rate q̇ through more specific models.

1We note that 〈Q̇〉ss = 0 in this system due to its finite state space.
However, we expect Eq. (9) to work even for systems with an infinite
state space, as suggested by our analytical and numerical examples.
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FIG. 1. (a) One-dimensional (1D) hopping process. (b),(c) Multi-
dimensional hopping models. The corresponding observable Qn,
which is x here, does not distinguish microscopic states within each
colored block. As with the 1D hopping model, we assume that θ is
the same for all red transitions. These models may describe molecular
motors that hop along a discrete lattice with several internal chemical
states. They also resemble sensory adaptation model in E. coli [35].

III. APPLICATION TO VARIOUS MODELS

Consider a particle hopping along a discrete lattice with a
lattice constant d, as illustrated in Fig. 1(a). Each state n has
a well-defined energy Un. The transition rates are assumed to
satisfy

w+
n = w0 exp

((
θ + 1

2

)
Un + hd

T

)
, (10a)

w−
n+1 = w0 exp

((
θ − 1

2

)
Un + hd

T

)
(10b)

with w0 the constant prefactor, and Un ≡ Un − Un+1 the dis-
sipation per jump. This model satisfies local detailed balance,
i.e., w+

n /w−
n+1 = exp([Un + hd]/T ). We assume that Un is

constructed from a continuous function U (x) via Un = U (nd).
The energy landscape can be tilted to drive the system out of
equilibrium.

First, we derive the high-frequency violation V∞. For this
system, the conjugate observable Qn is position x. We note
that (Qm − Qn)2 = d2 for all allowed transitions. Furthermore,
both the flux J = 〈ẋ〉ss/L and the asymmetric factor θ are
constant in the state space. Therefore, Eq. (7) is reduced to

V∞ = −2θ〈ẋ〉ssd. (11)

This simple relation (11) can be easily generalized to multi-
dimensional hopping processes illustrated in Fig. 1(b),(c), by
lumping states within each colored block and fluxes between
two connected blocks. For such multi-dimensional models,V∞
may vanish even if the system remains out of equilibrium, as
〈ẋ〉ss = 0 is not a sufficient condition for equilibrium here.
This is not possible for one-dimensional (1D) systems.

Second, we derive the renormalized HS equality. According
to I∗ in Eq. (9), we have

I∗ = d
∑

n

(
ν̄n + ν̄n+1

2
+ θ (ν̄n − ν̄n+1)

)
J n+1

n . (12)

Here, ν̄n = d(w+
n − w−

n ). We introduce εn ≡ ln[w+
n /w−

n+1] as
the entropy produced in the environment per jump, which has

a characteristic amplitude ε. Expanding Eq. (12) in Taylor
series of ε, we have ν̄n + ν̄n+1 = 2w0dεn + θO(ε2) + O(ε3)
and ν̄n − ν̄n+1 = O(ε2) (see Appendix B), which gives

I∗ = w0d
2
∑

n

J n+1
n εn(1 + θO(ε) + O(ε2)). (13)

We identify q̇ = T
∑

n J n+1
n εn as the dissipation rate of the

stochastic trajectory Qt , and γ∗ = T/(w0d
2) as the effective

friction coefficient. Finally, we obtain

γ∗I∗ = q̇(1 + θO(ε) + O(ε2)). (14)

The renormalized HS equality, i.e., γ∗I∗ = q̇, is recovered
when ε is small, regardless of asymmetry and discreteness.
While the asymmetry leads to a first order deviation, the
deviation of discreteness is only of the second order, thus
much smaller. The assumption of a constant θ is crucial
here. Throughout the derivation, we did not assume that J n+1

n

is constant, a characteristic property of 1D systems. Hence,
Eq. (14) can be generalized to multi-dimensional models in
Fig. 1(b),(c), where the same value of Qp = pd is shared by
all the states within the same colored block.

We sketch the generalization here. The perturbed rates of
the red transitions that change the observable are assumed to
satisfy

w̃n
m = w0 exp

((
θ + 1

2

)[
εn
m + h

Qn − Qm

T

])
, (15a)

w̃m
n = w0 exp

((
θ − 1

2

)[
εn
m + h

Qn − Qm

T

])
, (15b)

which essentially mimics Eq. (10), except that we do not
assume an energy landscape Un. The dissipation rate through
the stochastic trajectory Qt is defined to be

q̇ ≡ T
∑
n,m

(1 − δQnQm
)Jm

n εm
n , (16)

where εm
n = ln[ωm

n /ωn
m] is the environment’s entropy produc-

tion for the transition from state n to m, and (1 − δQnQm
) is a

weight that only counts transitions that change the observable.
Assuming that both εm

n and its relative variation are small along
the direction of red transitions, the renormalized HS equality
also emerges. The differences of network topologies are
captured by the effective friction coefficient γ∗ = 4T/(kw0d

2),
with k being the number of red transitions out of a node.

IV. MINIMUM MODEL FOR KINESIN

A kinesin is a type of molecular motor that, powered
by ATP, moves along microtubule filaments. Following the
experimental and modeling work in [30], we use the biased
diffusive model presented in Fig. 2(a) to describe the stepwise
dynamics of this motor, with d the step size. This is a special
case of the 1D hopping model that has translational invariance.
The dissipation per jump U can be tuned by changing ATP
concentration, and h is the external force that is applied to the
bead attached to the motor in a typical experimental setup. Ex-
periments show that the external force only affects the forward
transition rate w+ [30], as illustrated in Fig. 2(b). This situation
occurs when the external force only varies the energy barrier
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FIG. 2. (a) A simplified Markov model for kinesin. (b) The
experimentally suggested relations between transition rates w± and
the external force h [30], corresponding to the case with θ = 0.5.
(c) The energy landscape connecting neighboring states. The external
force only varies the energy barrier for the forward transition.

for the forward transition [Fig. 2(c)]. The scenario of kinesin
corresponds to a completely asymmetric model with θ = 0.5.

This simple model allows analytical solutions. At the steady
state with h = 0, the average velocity is given by 〈ẋ〉ss =
d(w+ − w−), and the dissipation rate q̇ = U 〈ẋ〉ss/d =
U (w+ − w−). The correlation spectrum of the velocity ẋ

is found to be C̃ẋ(ω) = (ω+ + ω−)d2, while the response
spectrum of the velocity, measured via applying a small
and periodic force, is given by R̃ẋ(ω) = d2[2θ (w+ − w−) +
(w+ + w−)]/2T . These spectra are constant in the frequency
domain due to the translational invariance of this simple
model. Indeed, the FDT is violated even in the high frequency
limit due to the presence of asymmetry, as illustrated in
Fig. 3(a).

FIG. 3. (a) The correlation spectrum C̃ẋ(ω) and the (real part of)
response spectrum R̃′

ẋ(ω) for the velocity ẋt , obtained at U = 1
and θ = 0.5. A finite violation of FDT, V∞, persists even in the
high frequency limit. (b) The relative violation of the FDT in the
high-frequency limit [V∞/C̃ẋ(∞)], the average drifting velocity 〈ẋ〉ss ,
and the predicted dissipation rate γ∗I∗ based on the renormalized
FDT violation integral against the actual dissipation rate q̇. Here,
the control parameter is the entropic change per jump, i.e., U/T .
(c) Verification of Eq. (11). The slope of each curve gives the
corresponding θ . Other parameters: w0 = 1, d = 1, and h = 0.

The relative high-frequency violation V∞/C̃ẋ(∞) becomes
smaller when the entropic change per transition, i.e., U/T ,
decreases [Fig. 3(b)]. It can be checked easily that Eq. (11)
holds here, as illustrated in Fig. 3(c). Therefore, a smaller
driving energy U reduces V∞ by slowing down the biased
motion [Fig. 3(b)]. Such a violation has been noticed recently
in a more realistic model of kinesin [31]. For a small U/T ,
the renormalized FDT violation integral I∗ multiplied with
the effective friction γ∗ well predicts the dissipation rate q̇,
as shown in Fig. 3(b).

V. PRACTICAL RENORMALIZATION

An important parameter in applying the HS equality is the
ambient temperature T , which is very challenging to determine
(or control) experimentally due to the tiny size of the molecular
machine. In practice, T has been determined from the ratio
C̃ẋ(ω)/2R̃′

ẋ(ω) in the high-frequency regime, assuming that
FDT is satisfied there [17,18,31]. According to our current
study, this assumption might be wrong in the presence of
perturbation asymmetry. In fact, the high-frequency violation
leads to a modified temperature:

Tre ≡ lim
ω→∞

C̃ẋ(ω)

2R̃′
ẋ(ω)

= T

1 − V∞/C̃ẋ(∞)
. (17)

It is reduced to the bath temperature when V∞ = 0. With this
temperature, we obtain a renormalized FDT violation integral
that becomes well-behaved:

Ire ≡ 〈ẋ〉2
ss +

∫ ∞

−∞
[C̃ẋ(ω) − 2TreR̃

′
ẋ(ω)]

dω

2π
. (18)

The effective friction coefficient γre can be determined from

γre ≡ lim
ω→∞

1

R̃′
ẋ(ω)

, (19)

which is an exact relation for Langevin systems, and serves as
a generalization here. When the entropic change per jump is
small, we have V∞/C̃ẋ(∞) 
 1, thus Ire ≈ I∗ and γre ≈ γ∗.
Therefore, γreIre also becomes a reasonable estimation of the
dissipation rate q̇ when the entropic change per jump is small.

We provide a numerical illustration for this renormalization
scheme using the 1D hopping model. Consider that
U (x) = U (x + L) + μ is a periodic function tilted by
an energy input μ at each period L, which drives the
system out of equilibrium. This is illustrated in Fig. 4(a).
The number of states within each period is N = L/d. The
prefactor w0 scales with 1/d2 so that the global features (mean
velocity, etc.) converge to a finite value in the continuum limit
d/L → 0. The correlation and response spectrum are shown in
Fig. 1(b) for d = 0.1 and θ = −0.2. Again, the FDT violation
persists even in the high frequency limit. The average entropy
production in the environment per jump, 1

N

∑
n |Un/T |, is a

crucial parameter here. It roughly scales with the discreteness
d of the system, and vanishes in the limit d/L → 0. By
changing the discreteness in our numerical simulation, we
find that, below a sufficiently small 1

N

∑
n |Un/T |, the

relative high-frequency FDT violation becomes negligible
[Fig. 4(c)], and the renormalized HS equality based on the
modified temperature emerges [Fig. 4(d)]. This holds true
for various values of θ . Again, θ = 0 is special in that the
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FIG. 4. (a) The energy landscape Un for the 1D hopping model, constructed from U (x) = − sin(2πx/L) − μx/L at a given lattice
constant d . The landscapes for different d’s are shifted vertically for illustration. (b) The correlation and response spectrum for the velocity
ẋt ≡ ṅt d , obtained at d = 0.1 and θ = −0.2. The FDT is restored in the high frequency limit with the renormalized temperature. (c) The relative
high-frequency-limit violation of FDT against the average entropic change in the environment per jump: 1

N

∑
n |Un/T |. (d),(e) Emergence of

the renormalized HS equality (from different schemes) at small medium entropy production per jump. Other parameters: w0 = 1/d2, T = 1,
L = 1, μ = 2.5, and h = 0.

corresponding V∞ = 0, and γreIre proves to be a much more
accurate (though not exact) estimation for the dissipation rate q̇

[Fig. 4(d)].
The performance for the previous renormalization scheme

is also shown in Fig. 4(e), which is quite similar. Hence, under
a small medium entropy production per step (i.e., ε 
 1),
different renormalization schemes converge to the same correct
answer since V∞/C̃Q̇ → 0 in the limit ε → 0. However, the
original HS equality still breaks down due to the divergence of
the FDT violation integral I .

VI. CONCLUSION

We have demonstrated for Markov systems that the FDT
violation persists generally in the high frequency limit in the
presence of asymmetric perturbation. This is in sharp contrast
to our physical intuition that the high-frequency correlation
and response essentially reflect only the thermal property of the
bath. The high-frequency violation leads to a divergent FDT
violation integral that invalidates the HS equality. However,
proper renormalization of the FDT violation integral restores
the HS equality effectively when the entropic change in
the environment is small for each jump. Hence, our study
provides a protocol to estimate the dissipation rate for discrete
Markov systems with asymmetry, based on the measured
correlation and response spectra. Our study also reveals a
linear relation between the high-frequency-limit violation and
the asymmetric factor θ , and therefore can be exploited to
infer θ experimentally. We believe that our results will guide
further investigation of kinesin [31].
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APPENDIX A: CORRELATION, RESPONSE, AND FDT
VIOLATION IN GENERAL MARKOV MODELS

1. Correlation spectrum

Noting that the correlation function for Qt satisfies CQ(t −
τ ) ≡ 〈[Qt − 〈Q〉ss][Qτ − 〈Q〉ss]〉ss , we have

CQ̇(t − τ ) = ∂2CQ(t − τ )

∂τ∂t
. (A1)

It is easier to calculate CQ(t − τ ) first. Assuming t � τ , it
satisfies

CQ(t − τ ) =
∑
n,n′

QnQn′P (t − τ ; n,n′)P ss
n′ − 〈Q〉2

ss , (A2)

where P (t − τ ; n,n′) is the propagator, or the probability for
reaching state n at time t , assuming that the system starts from
state n′ at time τ . In the eigenspace,

P (t − τ ; n,n′) =
∑

j

yj (n′)e−λj |t−τ |xj (n). (A3)

Indeed, it is the solution of the corresponding master equation
(3), given the initial condition P (0; n,n′) = δnn′ . Inserting
this relation back to Eq. (A2) and introducing the projection
of Q on the j th eigenmode, i.e., αj ≡ ∑

n Qnxj (n) and
βj ≡ ∑

n Qnyj (n)P ss
n , we obtain the expansion of correlation

function in the eigenspace:

CQ(t − τ ) =
N∑

j=2

αjβj e
−λj |t−τ |. (A4)
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The contribution of the first eigenmode is counteracted by
〈Q〉2

ss . Stationarity of the system guarantees that CQ(t − τ ) =
CQ(τ − t). Therefore, Eq. (A4) obtained from t � τ is also
applicable for t < τ . We use the following convention for
Fourier transform:

f̃ (ω) =
∫ ∞

−∞
f (t) exp(iωt)dt, (A5)

f (t) =
∫ ∞

−∞
f̃ (ω) exp(−iωt)

dω

2π
. (A6)

Combining Eq. (A1), Fourier transformation and Eq. (A4), we
finally obtain the velocity correlation spectrum 6(a).

2. Response spectrum

The response spectrum can be obtained by studying the
response of the system to a periodic perturbation. Consider
ht = h0 exp(−iωt) with h0 a small amplitude and i the imag-
inary unit. Expanded in Taylor series, the modified transition
rate matrix M̃ is given by

M̃ = M + M∗h0 exp(−iωt) + O
(
h2

0

)
, (A7)

where M∗ ≡ ∂hM̃|h→0. On the other hand, the modified
distribution can also be expanded up to the first order:

P̃m = P ss
m + P ∗

mh0 exp(−iωt) + O
(
h2

0

)
(A8)

with P ∗
m ≡ ∂hP̃m|h→0. Since dP̃m/dt = ∑

n M̃mnP̃n and∑
n MmnP

ss
n = 0, we obtain in a matrix form

P ∗ = − 1

M + iω
M∗P ss. (A9)

For the observable Qt , its response spectrum is given by

R̃Q(ω) =
∑

n

QnP
∗
n =

N∑
j=2

αjφj

λj − iω
, (A10)

where φj ≡ ∑
n Bnyj (n) with Bn ≡ ∑

m M∗
nmP ss

m . By using
the transformation RQ̇(t) = dRQ/dt or R̃Q̇(ω) = −iωR̃Q(ω),
we obtain the velocity response spectrum 6(b).

3. The renormalized FDT violation integral I∗

We derive Eq. (9). First, note that (T φj − λjβj ) is a key
quantity in the violation spectrum integral:

I∗ =
∑

j

λjαj (T φj − βjλj ).

According to definitions of these coefficients, we obtain

T φj − λjβj =
∑
n,m

yj (n)J n
m

(Qn + Qm

2
+ θm

n (Qm − Qn)

)
.

For equilibrium systems, the flux J n
m vanishes due to detailed

balance. This leads to T φj = βjλj for all eigenmodes, and thus
the vanishing of the FDT violation integral. On the other hand,
λjαj = −∑

n ν̄nxj (n), with ν̄n ≡ ∑
m wm

n (Qm − Qn) being
the average change rate of Qt when it starts from state n.

Combining these relations, we obtain the analytical expression
for the effective FDT violation integral:

I∗ =
∑
n,m

ν̄nJ
m
n

(Qn + Qm

2
+ θm

n (Qm − Qn)

)
. (A11)

Noting that
∑

m Jm
n = 0 due to stationarity, we can subtract∑

n,m ν̄nJ
m
n Qn (which is also zero) from I∗, and symmetrize

the resulting expression to obtain Eq. (9).

APPENDIX B: THE RENORMALIZED HS EQUALITY

Here, we provide more details of deriving the renormalized
HS equality, give numerical illustrations, and present the
generalization to higher dimensional models mentioned in
the Main Text. First, we consider the 1D hopping model
mentioned in Fig. 1(a). Following Eq. (12), we are interested in
how ν̄n + ν̄n+1 and ν̄n − ν̄n+1 behave when εn is small. Here,
ν̄n = d(w+

n − w−
n ). More explicitly, we have

ν̄n + ν̄n+1 = w0d[(e(θ+1/2)εn − e(θ−1/2)εn−1 )

+ (e(θ+1/2)εn+1 − e(θ−1/2)εn )].

Applying Taylor expansion, we obtain

ν̄n + ν̄n+1 = w0d

[
εn + εn−1 + εn+1

2
+ θ (εn+1 − εn−1)

+ θ

(
ε2
n + ε2

n+1 + ε2
n−1

2

)

+
(

1

8
+ 1

2
θ2

)(
ε2
n+1 − ε2

n−1

) + O(ε3)

]

with ε capturing the overall amplitude of εn. Similarly, we have

ν̄n − ν̄n+1 = w0d

[
εn−1 − εn+1

2
+ 2θ

(
εn − εn+1 + εn−1

2

)

+
(

1

4
+ θ2

)(
ε2
n − ε2

n−1 + ε2
n+1

2

)

− θ

2
(ε2

n+1 − ε2
n−1) + O(ε3)

]
.

Now, we assume εn = εf (nd) with f (x) a continuous function
and ε ∝ d. The motivation of this assumption is that there is an
underlying smooth energy landscape, as discussed in the main
text. From a Taylor expansion, we obtain

εn±1 = ε

[
f (nd) ± ∂f

∂x
d + 1

2

∂2f

∂x2
d2 + O

(
d3

L3

)]
.

Therefore, we have

εn+1 + εn−1 = 2εn + O

(
ε

d2

L2

)
, (B1)

εn+1 − εn−1 = 2ε
∂f

∂x
d + O

(
ε

d3

L3

)
, (B2)

ε2
n+1 + ε2

n−1 = 2ε2
n + O

(
ε2 d2

L2

)
, (B3)

ε2
n+1 − ε2

n−1 = 4εεn

∂f

∂x
d + O

(
ε2 d3

L3

)
. (B4)
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Plugging these relations back into the Taylor expansion of ν̄n + ν̄n+1 and ν̄n − ν̄n+1, and noting that d/L = O(ε), we finally
obtain

ν̄n + ν̄n+1 = 2w0d(εn + θO(ε2) + O(ε)3), (B5)

ν̄n − ν̄n+1 = O(ε2). (B6)

This then leads to Eq. (14).
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