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Supplementary Information

Supplementary Fig. 1. Models, assumptions and limitations of Coherent Sparse Optimization. a, Simple example of
the class of stochastic models that CoSpar seeks to learn. In such models, each node represents an observed cell state.
In practice, thousands of measured states are included; here only five are shown. At each state cells self-renew, die, or
differentiate with state-specific rates. The mean fraction of cells in each state evolves according to coupled first-order
equations as shown. See Supplementary Note 1 for details.



b, The empirically-observed finite-time transition map can be interpreted through its relation to the transition rate matrix
K (see panel a). See Supplementary Note 1 for details.
c, Schematics illustrating the operational, experimentally-accessible definition of a transition probability, as the average
fraction of progeny derived from an initial cell i at t0 that differentiates into a target state j at later times. As defined,
transition probabilities are sensitive to biases in fate choice, and to differential rates of cell division and cell loss.
d, Schematics exemplifying that transition maps cannot distinguish fate bias from differences in net rates of cell
expansion (division – loss). Three different underlying dynamics lead to the same transition maps.
e, Schematics clarifying the robustness of CoSpar to clonal dispersion (demonstrated in Fig. 3).  i), When cells undergo
extensive proliferation prior to fate bifurcation and clonal sampling, each clone densely samples several differentiation
trajectories. By imposing sparsity and coherence, CoSpar re-enforces a minimal number of transitions that explain
dynamics across all clones.  ii), At lower rates of proliferation, fewer cells from each clone are sampled, and it may lead
to observing clonally-related cells at different time-points on different trajectories, as shown (blue clone sampled towards
fate A at t1, and towards fate B at t2). By enforcing coherence between clones rooted in neighboring states, CoSpar may
still recover a correct transition map. In this case, there is a trade-off in the CoSpar cost function between minimizing the
clone transition map error and maximizing coherence. iii), Lacking proliferation, one cannot establish clonal relationships
that constrain dynamic inference.

Supplementary Fig. 2. Illustration of early-time clonal dispersion, supporting Fig. 1f(v). When clones are observed at
more than one time-point, clonally-related cells in the earliest observed time-point may be similar (non-dispersed), in
which case the observed early state of a clone provides a good approximation of early state of clonal progeny observed
later. Alternatively, clonally-related cells may have already become heterogeneous (dispersed) at the earliest observed
time point. Dispersion introduces uncertainty as to the founder state of a clone, and thus introduces errors into inferred
transition maps. a,b Examples of non-dispersed clones, where the observed initial cell (red) and the remaining sister cell
(orange) are very similar in states. In these two examples, the cells observed at an early time point serve as good
estimates of the ancestors of the cells observed later (faded, red). c-e Examples of dispersed clones, where the initial
states (red=observed; orange=remaining sister cells) can be very different. In these cases, if some of the early cell states
are unobserved due to drop-out (d, e), the apparent clonal transitions can be discordant with the underlying dynamics.



Supplementary Fig. 3. CoSpar accepts both static and cumulative barcoding data.  a,b Illustration of static and
cumulative barcoding, and their corresponding cell-by-barcode matrix.



Supplementary Fig. 4. Flowchart for using CoSpar with different experimental designs. Abbreviation: ED for
Euclidean distance and SPD for shortest-path graph distance. See Methods for the definition of key parameters.



Supplementary Fig. 5. Evaluating CoSpar performance across parameter sweeps.
a-c, Evaluating the coherence and sparsity assumptions. The extent of coherence in CoSpar can be tuned with the
smooth kernel exponent , and the desired sparsity can be set with the sparsity threshold (see Methods for parameter𝑛 ν

𝑐𝑠
definitions). In a and b, we test the importance of these assumptions in the hematopoiesis dataset using a
cross-validation test: apply CoSpar to the top 15% dispersed clones across all time points (training dataset), and train
MPLClasifier with the inferred fate bias to predict the bias on the remaining 85% testing dataset. We evaluate the
performance using the correlation between the predicted and the observed bias. c, The fate prediction error at different
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d-f, Performance of CoSpar using simulations as in Fig. 3a-d with a range of algorithm parameters: (d) smoothing kernel
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g, Demonstration of algorithm convergence, seen in the correlation between maps from consecutive iterations against
the number of iterations for the CoSpar algorithm (see Methods). The maps analyzed here correspond to those from the
down-sampled hematopoietic dynamics (Fig. 4h).
h, Computational time to convergence, as a function of total cell number.  In the first run, CoSpar will generate (and save)
a similarity matrix, which is very costly (red curve). CoSpar can use similarity matrices generated previously to speed up
computation (blue curve).



Supplementary Fig. 6. Establishing upper bounds for fate prediction after data loss. In this paper, performance of
CoSpar was compared to previously published methods by discarding clonal data and then examining the fidelity of fate
predictions in the face of data loss. Supporting the results reported in Figs. 4g,i and 5h, we obtain an upper bound for
fate prediction, by randomly sampling 50% cells from the full ground-truth dataset in each case to predict the progenitor
bias of remaining cells, with different smoothing exponents n.  Prediction was carried out by first inferring the progenitor
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Supplementary Fig. 7. Benchmarking CoSpar in hematopoiesis.
a, CoSpar reconstructs transition maps from sub-sampled and dispersed clonal data. Here, we evaluate the prediction
error as the Wasserstein distance between fraction of cell progeny predicted to occupy a given fate, compared to that
obtained from the ‘ground truth’ transition map constructed using all clonal data rooted in day 2 clones (see main text). In



a, the prediction error is assessed for a decreasing fraction of day 4-6 clones, obtained by progressively excluding less
dispersed clones that contribute the strongest signal (see Fig. 4b). Green curve is obtained by applying the method from
the original paper.  A lower bound on the error (random split distance) is the Wasserstein distance between random 50%
partitions of the ground-truth data.  The largest observed errors are comparable to the Wasserstein distance between
populations separated by two days of progressive differentiation (upper grey arrow).
b, The ground truth and predicted fate maps for neutrophils cluster using the 15% most dispersed clones. These plots
illustrate one value on the plot in a.
c, The normalized covariance of clonal barcode abundances between different cell types, calculated using all data on
day 4 of differentiation1.
d, The correlation of predicted transition probabilities of progenitors, inferred with CoSpar using different data indicated
(See Methods).
e, Joint CoSpar optimization is robust to initialization and choice of distance metric. This panel accompanies Fig. 4g.
The progenitor biases are calculated from the transition maps for different initialization choices of the transition map, and
are evaluated using two metrics: correlation with expected fate bias and the fate prediction error (defined in
Supplementary Fig. 5c). Optimal transport (OT) is used to initialize the transition map from state information alone prior to
CoSpar. Plots scan the OT entropic regularization strength .ϵ

𝑂𝑇
f, Application of Waddington-OT (WOT) to hematopoiesis dataset. WOT was applied to the same data in Ref2, where
clonal data was used to tune the local cell proliferation rates. When WOT is applied without access to any clonal
information, performance is degraded as seen by comparing the plots here to the ground truth. Plots are to be compared
with those in panels c,d and Fig. 4c. WOT is applied with default parameters ( =0.05).ϵ

𝑂𝑇
g-i, Predicting early fate boundaries in the Gata1+ lineages using the original method from Ref2. g, Predicted progenitor

bias among the Gata cells on the state embedding. h, Comparison of the number of differentially expressed genes1+

(FDR<0.05) identified from different methods of clonal analysis. i, Gene expression heat map for all differentially
expressed genes identified with the Weinreb method2.
j,k Comparison of marker gene recovery using end-point clones or just state information. j, Prediction of progenitor fate
bias from CoSpar with day-6 clones, CoSpar with only state information, and Waddington-OT. Here, CoSpar predictions
are obtained with the Euclidean distance metric. k, Fraction of recovered marker genes for each method at the
respective choice of distance metric (SPD: shortest-path distance, ED: Euclidean distance). As in h, we define the target
set of markers as the 377 genes defined by CoSpar using all clonal information. We report the recovery fraction as the
number of true positives divided by 377.



Supplementary Fig. 8. Benchmarking fate inference using SuperOT. SuperOT is a neuron-network-based method
that integrates clonal data across time points with state information for fate prediction3. We use the hematopoiesis
dataset to evaluate SuperOT in its ability to exploit clonal information across time points to predict progenitor fate bias
between Neutrophil and Monocyte for cell states on day 2 and 4. Rather than predicting the probability of fate bias,
SuperOT specifically seeks to associate early transcriptional states with later discrete fate labels, which can be
interpreted to represent the majority fate of a given clone. To allow comparison of CoSpar with SuperOT, we extend
CoSpar to generate a similar majority-fate prediction (See Methods). The correlation R between predicted and observed
fate outcome is reported. In the first test (a,b), we use all available clonal data for both training and testing. In the second
test (c,d), we restrict the test to the top 15% dispersed clones in the hematopoiesis dataset, and predict the fate bias of
the cell states belonging to the remaining 85% clones. These tests indicate that SuperOT performance is comparable to
CoSpar using all clonal data, but SuperOT is less robust when inferring a Transition Map using clonal data with weak fate
biases. This difference in performance may occur because SuperOT, as currently implemented, relies on assigning each
clone with a single fate outcome.



Supplementary Fig. 9. Benchmarking fate inference using LineageOT. LineageOT is a method that seeks to learn a
transition map from an early time point to a later time point, using clonal data observed only at a later time point4. Here,
we show UMAPs of scRNA-Seq data on hematopoietic differentiation (see Fig. 4 of main text), colored by the fate bias
predicted by the LineageOT and CoSpar methods respectively. Top row shows predictions using the full dataset; bottom
row shows predictions using only the 15% most dispersed clones to train the models (lower panels). In each case, a
Transition Map is inferred, and from this map the fate bias of cells observed at day 4 of culture are calculated. LineageOT
and CoSpar were run for a one time-point analysis with clonal information only on day 6 (left and right panels). We
compared the model likelihoods using the Vuong Test5, which evaluates the probability (p-value) that the two models are
equally likely in light of the same test data (one-sided; see Supplementary Note 7 for test definition and Likelihood
calculations). For the models trained with the full dataset of day-6 clones, we directly compared model predictions with
the observed day-6 fates of each day-4 cell. For the sub-sampled test, the model predictions were then transferred to
the remaining clones (the test set), by averaging the fate bias of the k-nearest training-set neighbors (k=20) of each
test-set cell. The log-likelihood of the models is then evaluated from the observed fates in the test dataset (see
Supplemental Note 7 for likelihood calculation; we used a pseudo-count =0.01 to avoid numerical instability). The𝑐

0
mean log-likelihood ratio (LLR) between the two models is shown, with the associated p-value of the Vuong test. We also
present the LLRs and p-values using binarized fate bias prediction (i.e., binarized to be {0,1} at the threshold 0.5). In both
calculations, CoSpar has a higher likelihood of predicting clonal outcomes than LineageOT that is statistically significant
(Vuong test p-value<10-10).



Supplementary Fig. 10. Benchmarking CoSpar in fibroblast reprogramming.
a, Expression of selected marker genes on UMAP visualizations from day 15, 21 and 28.
b, Reproduction of results in Fig. 5e using a similarity matrix obtained from each sub-sampled dataset. Results are seen
to be robust to sub-sampling strategies.
c-e Transition maps inferred by CoSpar with access only to end-point clonal information are robust to the choice of
initialization.  These panels accompany Fig. 5h. c, Visualization of the progenitor bias derived from the initialized
transition map and the corresponding CoSpar prediction, for different entropic regularizations and distance metrics as
indicated. d, Parameter sweep quantifying the stability of the predicted progenitor bias. Two metrics are used: correlation



with expected fate bias and the fate prediction error (defined in Supplementary Fig. 5c). e, Progenitor bias prediction
from Waddington-OT6, which relies only on state information. Upper panel: the predicted progenitor bias on the state
manifold at =0.05. Lower panel: progenitor bias correlation with ground truth across different values.ϵ

𝑂𝑇
ϵ
𝑂𝑇

f-h, CoSpar analysis with clonal barcodes integrated at sequential time points from the reprogramming dataset7. The
analysis was done with clonal data on day 28. f, The cumulative barcoding scheme in the reprogramming experiment.
Cells were barcoded on day 0, 3, and 13.  Bottom panel shows the histogram of the number of tags from different time
points per cell. g, A progenitor bias prediction generated by concatenating all tags from all three time points into a single
clonal barcode for each cell, thus ignoring the nested clonal structure in the data. h, Equivalent results of CoSpar
analysis with nested clonal structure, carried out by treating Tag0, Tag3 and Tag13 as independent barcodes for a cell,
such that each cell may have up to three barcodes.
i-l CoSpar with multiple clonal time points is robust to variation of barcoding time, clone size and cell loss, using
correlation with expected progenitor bias ( R ) on day 15 and 21 as the metric (same as d and e). i, CoSpar gives similarly
accurate predictions using barcoding tags from a single time point. j, The clone size distribution (each barcode is a
tag0-tag3 concatenation). k, CoSpar performs robustly using clones with different sizes or their combination. l, CoSpar is
robust to cell loss in a clone, modeled by sub-sampling the reprogramming dataset. The average clone sizes are
annotated for selected data points (in red).



Supplementary Fig. 11. Marker gene expression and clonal structure during differentiation into alveolar cells and
other endodermal cells.
a, Expression of genes associated (in Ref8) with iAEC2 cells, non-lung endoderm (NLE), gut endoderm, and pulmonary
neuroendocrine cells (PNEC).
b, Leiden clustering of day-27 cell states. Clusters are named based on their corresponding gene expression.
c, Normalized barcode covariance on day 27 among all clusters, showing evidence of clonal partitioning of iAEC2 cells.
d, Expression of two representative genes marking proliferating cells (TOP2A and MKI67) on day 17 and 27 state
manifold, showing that cells predicted by CoSpar to show low commitment on day 17 appear proliferating (Fig. 6c).
e-g, CoSpar predicts that lineage restriction occurs after day 15, except for a rare fraction of cells committed to
non-iAEC2 fates. e, UMAP visualization of cell states on day 15 and 27. f, CoSpar-predicted progenitor bias among cells
on day 15. g, Histogram of the progenitor bias on day 15 (shown in panel f). Unlike on day 17 (Fig. 6c), here progenitor
bias is concentrated at 50%.
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Supplementary Note 1: Connecting transition maps to models of differentiation

This note grounds the finite-time transition map in a stochastic model of cell differentiation. In doing so it also clarifies
what cannot be learnt from the transition map.

We begin by considering a Markov model of differentiation represented by an arbitrary graph of finite size, where each
node represents a cell state. In this model, each cell probabilistically undergoes proliferation, death, and differentiation
with rates that are specific to the cell state. A clone is a realization of such a stochastic branching process, seeded as a
single barcoded cell in some cell state. Starting from a cell state i, kij is the differentiation rate to a different state j; bi is
the probability of a cell dividing into two cells; and di is the cell loss rate for cells in state i. We assume that these rates are
first-order (independent of the number of cells in a state). These rates can vary with time to reflect changes in the tissue
environment. Supplementary Fig. 1a shows a simplified example of such a model.

This model is useful in its simplicity, but it is clearly not general: being a Markov process, it assumes that we have
a complete measurement of the variables that could affect state dynamics, such as the transcriptome, epigenome, and
extracellular environment. This is unlikely to be true. Incomplete state measurement leads to a non-Markovian dynamics9.
Nonetheless, our model may be a useful approximation as it generates predictions of biomarkers and fate regulators, and
their correlation with fate bias.

Our goal in this paper is to learn the structure of such a graphical model (e.g. Supplementary Fig. 1a) and its rate
constants, from LT-scSeq data. To learn a model from data, we focus most simply on the mean dynamics of cell number at
each state. To do so, one could consider a complete stochastic description using the chemical master equation10, which
gives the distribution evolution over the extended state space N ⇥ X = {(Ni, Xi) 8 i; and Ni = 1, 2, ...}, where Ni is
the number of cells at state i and Xi is the corresponding state. However, because we assume a first-order model, there
exists a closed-form equation for the dynamics of average cell number N̄i(t) at state i and time t,

d

dt
N̄i(t) =

X

j

N̄j(t)Kji, (1)

where Kij ⌘ (1 � �ij)kij + �ij(bi � di �
P

k 6=i kik), with �ij = {1 if i = j; otherwise 0}, is the instantaneous transition
rate from state i to j that includes all cellular processes: division, cell death, and differentiation. This mean dynamics only
captures the net effect of cell number change (bi� di), and does not distinguish whether it is from cell proliferation or loss.

To make contact with experiment, we represent the number of cells at each state as a fraction of the total cell number to
obtain the cell density:

Pi(t) ⌘
N̄i(t)

N̄(t)
, (2)

where N̄(t) ⌘
P

j N̄j(t) is the total cell number at time t. The dynamics of the cell density Pi(t) is

d

dt
Pi(t) =

X

j

PjK̃ji(t), (3)



where K̃ji(t) ⌘ Kji��ji↵̄(t), and ↵̄(t) ⌘
P

k Pk(t)(bk�dk) is the average growth rate of the population at time t. Diagonal
elements in K̃ reflect whether net growth in each state is larger (positive) or smaller (negative) than the population average.

We now can ground the transition map T in terms of the model. Integrating Eq. (3) from time t1 to t2 leads to the relation

Pi(t2) =
X

j

Pj(t1)Tji(t1, t2), (4)

where the intrinsic finite-time transition map

T = exp
⇣Z t2

t1

K̃dt

⌘
(5)

is obtained from matrix exponentiation of the corrected instantaneous transition rate matrix K̃.
The transition probability Tij is the fraction of progenies from initial state i that ends at later state j (Supplementary

Fig. 1b). To see this, we can sum over all states in Eq. (4), and noting that
P

i Pi(t) = 1, we have 1 =
P

j Pj(t1)
P

i Tji.
This equation is valid for any distribution Pj(t1) and therefore the transition map satisfies the conservation property

X

j

Tij = 1. (6)

Owing to its normalization (Eq. 6), the transition map that is experimentally accessible captures the most interesting
property we want: the probability of a cell to differentiate into different cell types. A certain initial state i can transition to
multiple states over time window t, i.e., T has multiple non-zero entries associated with the i-th row.

Nonetheless, it is important to note that Tij is shaped both by differences in transition rates between states, and by
the collective effect of proliferation and cell death along the trajectories between state i and j. Mathematically, although
proliferation and cell death only affect the diagonal terms in the instantaneous transition matrix K̃, the matrix exponentiation
in Eq. (5) will propagate this effect to the off-diagonal terms in the finite-time transition matrix T . For this reason, empirical
transition maps alone obscure differences between biases in proliferation and choice towards competing fates, as illustrated
in Supplementary Fig. 1d.

Supplementary Note 2: The effect of noisy measurement on transition map inference

In Eq. (5), the transition map is seen to emerge from stochastic state transitions accumulating over time. In practice, an
inferred map is also shaped by sources of noise associated with measurement and subsequent dimensionality reduction
of the data. In this note, we examine the errors propagated from different technical sources into the observed transition
map T . As might be expected, we show that technical sources of error lead to a ‘blurred’ transition map, delocalized over
the cell state graph. The smoothing kernels connecting the true and observed transition map can be understood as a
matrix product of error kernels associated with each individual source of uncertainty.

a. Measurement errors. We will consider the errors associated with correctly assigning transition rates from a state i

at time t1 to state j at time t2. Such a transition contributes to mass at matrix element Tij(t1, t2) of the transition map. At
time t2, errors in measurement re-assign cells from state j to another state k, with a probability ✏jk normalized such thatP

k ✏jk = 1. With such an error, the observed transition map now becomes T
(obs.)
ij =

P
k Tik✏kj . A similar error may occur

at t1. Because technical errors may differ between time points, we will denote ✏
(i) as the error in measuring the state of a

cell at time ti. Accounting for errors in two time points, the observed transition map now becomes:

T
(obs.)
ij =

X

k,l

✏
(1)
ki Tkl✏

(2)
lj .

b. Clonal dispersion. In LT-scSeq experiments, the cells sampled at t1 are clonally related to those that give rise to
cells sampled at t2. But being distinct, they may occupy different states. As above, we consider the error in estimating
transition rates from state i at t1 to state j at t2. At t1, a clonally-related state, k, is observed instead of state i, with
a probability that we shall denote �ik. This probability satisfies normalization

P
k �ik = 1. Accounting for this clonal

dispersion, the observed transition map relates to the true transition map through the relation:

T
(obs.)
ij =

X

k

�kiTkj .



Note that because cells divide, more than one cell may be observed in a clone at time t1. In this case, the error kernel
�ki no longer has a unique definition because choices in constructing the transition map may assign more or less weight
to particular cells within each clone. By enforcing local coherence, CoSpar strongly weights �ki towards states k that are
close to i, thus reducing errors in the transition map as compared to using a ‘naive’ clonal analysis method such as we
have previously reported2, which weights all cells in a clone at t1 equally.

Compounding clonal dispersion and measurement error, we recognize the the observed transition map has the form:

T
(obs.)(t1, t2) = S

T
1 T (t1, t2)S2,

where S1 = ✏
(1)

� and S2 = ✏
(2).

Supplementary Note 3: Coherent sparse optimization

Our goal in dynamic inference is to learn the finite-time transition map, as defined in Eq. (4), for the set of observed cell
states in a given experiment. In particular, we want to constrain the map inference with experimentally observed clones at
different time points.

We first derive the mathematical constraints on T from multiple observed clones at time t1 and t2. In the above model
of stochastic differentiation, cells in a clone are distributed across states with a time-dependent density vector ~P (t). The
density distribution of each clone forms an independent constraint for the transition map according to Eq. (4). Given
multiple clonal observations, we consider each observed cell transcriptome as a distinct state, and we can represent the
density vector in this state space, i.e., ~P (t) 2 RNt , where Nt is the total cell number at t, including those lacking clonal
information. We then introduce S(t) 2 R

Nt⇥Nt as a matrix of cell-cell similarity over all observed cell states at time t.
Denoting I(t) 2 {0, 1}M⇥Nt as a barcode-by-cell matrix of M clonal barcodes, the density profiles of observed clones
P(t) 2 R

M⇥Nt are estimated as

P(t) = I(t)S(t). (7)

In matrix form, the constraint Eq. (4) from all observed clones then becomes

P(t2) ⇡ P(t1)T (t1, t2). (8)

With enough clonal information, T (t1, t2) could in principle be learnt by matrix inversion. However, the number of clonal
barcodes (M ) will always be far less than the number of cells profiled. To constrain the map, we require that: 1) T is a
sparse matrix (Fig. 1e, left panel); 2) T is locally coherent (Fig. 1e, right panel); and 3) T is a non-negative matrix. With
these requirements, the inference can be formulated as the following optimization problem:

min
T

||T ||1 + ↵||LT ||2, s.t.
X

m

||~P (t2;m)� ~P (t1;m)T (t1, t2)||2  ✏; T � 0; Normalization. (9)

Here, Lij = 1 � w̄ij/
P

j w̄ij is the normalized graph laplacian, with wij the graph connectivity of the nearest neighbor
kNN graph of cell states. ~P (t;m) is a row-vector representing the distributions of cell states within the m-th clone, or m-th
column of the matrix P(t). We note that

P
m ||~P (t2;m) � ~P (t1;m)T (t1, t2)||2 = ||P(t2) � P(t1)T (t1, t2)||2, which gives

the form of the cost function given in Fig. 2a. Note that Eq. (7) integrates the state information (encoded in S) and clonal
information (encoded in I) into P. This local smoothing operation indirectly imposes coherent transitions in this system.

Before continuing, we note the relationship of this optimization problem to past literature. Absent the coherence
constraint (↵ = 0), this optimization problem reduces to sparse optimization by lasso regression. To our knowledge, only
one study has explored the extension of lasso to enforce coherence with relation to a data embedding, called ‘fused lasso’
optimization11. Fused lasso is however different in three important ways from Eq. (9). First, it suppresses the first-order
derivative of the inference target to promote coherence. Second, fused lasso was developed for 1-d or 2-d datasets,
assuming a natural ordering for the observed cell states. Third, like lasso, the inference object of fused lasso is a vector.
In contrast, the coherent sparse optimization in Eq. (9) is generalized to arbitrary graphs; it suppresses the second-order
derivative (the curvature) to enforce coherence; and it is generalized to matrix inference.

We now discuss implementation of the optimization problem. Eq. (9) might be formulated as a quadratic programming
problem, and be solved accordingly as in fussed lasso11. However, this strategy is very expensive computationally11. There
could be ways to solve the optimization efficiently and exactly, and we leave it as an open problem. Instead, we provide
an efficient yet heuristic way to solve the optimization. Specifically, we break down individual elements of the objective
function, and propose a simple alternative for each of them.



1. Sparsification. Instead of including the sparsity term ||T ||1 into the objective function, we directly apply a pre-defined
thresholding to the transition map at each iteration: T  ✓(T, ⌫), where

[✓(T, ⌫)]ij =

(
Tij , if Tij � ⌫maxj Tij

0, Otherwise
(10)

2. Transitions within clones. To enforce Eq. (4) for each observed clone, we consider a clonal transition map ⇡
m for the

m-th clone, which allows only intra-clone transitions and conserves the total transition flux within a clone. We do so
by projecting the transition map T and performing clone-wise normalization: ⇡m  Pm(T ):

[Pm(T )]ij =
⇡̃
m
ijP

i0j0 ⇡̃
m
i0j0

, (11)

where ⇡̃
m
ij = Tij if the transition i! j occurs within clone m, and otherwise ⇡̃

m
ij = 0. The composite map capturing

all intra-clone transitions is then,

P(T ) =
X

m

Pm(T ) (12)

A map constructed in this way, ⇡ = P(T ), will satisfy the following equation approximately:

I(t2) ⇡ I(t1)⇡(t1; t2), (13)

which is the clonal constraint for directly observed cell states12. The map ⇡(t1; t2) can be used to specify T , but
being constrained to clones it is no longer coherent.

3. Coherence. To enforce coherence, we begin by noting that Eqs. (4), (7) and (13) together lead to the relationship
T (t1; t2) = S

�1
t1 ⇡(t1; t2)St2 . As similarity matrices S are generally non-invertable, we introduce a pseudo-inverse,

T (t1; t2) ⇡ S
+
t1⇡(t1; t2)St2 . (14)

Eq. (14) smoothes the transition map learnt within-clones, ⇡, over nearby states to get a transition map T across
all states. T is now a locally continuous map and satisfies the coherence constraint: similar initial cell states have
similar fate outcomes.
This approach to calculating T leads to minimization of the term ↵||LT ||2 in Eq. (9), although the parameter ↵

establishing the relative weight of coherence is no longer explicitly identifiable in the procedure. It is instead reflected
in the extent of smoothing.

These three steps, carried out sequentially and iteratively, define the CoSpar algorithm given in methods. Note that
normalization is performed clone-wise in Eq. (12). The non-negativity constraint, T � 0, is implicitly satisfied in the above
steps. In our strategy, Eq. (14) is the most time-consuming step as it involves multiplication of large matrices. CoSpar
is nonetheless efficient as it carries out matrix multiplication only at Eq. (14), and we find that it converges within a few
iterations (Supplementary Fig. 5g).

Supplementary Note 4: CoSpar analysis of cumulative and evolving clonal barcodes

Recent technical advances now enable the generation of clonal barcodes that encode nested clonal structure through
ongoing barcode insertion or by gradual mutation of a clonal barcode13. When these clonal tagging (insertion/mutation)
events occur across multiple cell division cycles, they will define clones identifiable by the earliest tagging event, with
nested sub-clones that are identifiable through the acquisition of further clonal barcode insertions or mutations after one
or more cell divisions. In this note, we discuss challenges in interpreting such structured clonal relationships in generating
a transition map between cell states across two time points. We then explain how CoSpar accepts and uses nested clonal
barcode data to do so.

The problem of learning a transition map between times t1 and t2 using nested clonal data at a single time point has
been previously considered (LineageOT4). Clonal sub-structure resulting from division events after t1 should not alter the
transition map: this is because the map (merely) reports the fraction of progeny of each cell at t1 to be observed at a
given state at t2, irrespective of the history of cell division and cell loss that occurred between t1 to t2. By contrast, each
sub-clone from a division event prior to t1 reflects a separate clonal constraint for transitions between t1 to t2, since each



sub-clone is rooted in a different cell state at t1. For sub-clones that arise immediately prior to t1, it is reasonable to expect
that the progenitors of sub-clones would be similar at t1. These general principles guide the use of nested clonal data for
inferring a transition map.

Therefore, the timing of sub-clonal labeling relative to t1 becomes important to the decision on how to interpret nested
clonal information in constructing a transition map from t1 to a later time point. In some published experiments, sub-clonal
labels were introduced at defined time points7,14. If these time points occur after a time point of interest t1, it becomes
clear that such labeling should add no further information to a map rooted in t1. If these time points occur prior to t1, then
sub-clonal relationships should be treated as distinct clones for the purpose of learning the transition map with CoSpar.
Other recent methods, however, rely on stochastic clonal barcode integration or mutation13, which may not allow estimating
the timing of clonal barcoding. In such cases, further assumptions are needed to learn both the transition map and the
timing of sub-clonal barcoding events. We have not attempted to solve this more general problem.

As a compromise, in implementing CoSpar we take the approach of treating all clonal relationships between cells with
equal weight, irrespective of their nesting level. Consider a clone with three identified sub-clones. Such a clone can be
represented by three barcodes, such that the cells in this clone could have any of three clonal barcode vectors: either
the first barcode is present (1,0,0), or the first and second (1,1,0), or the first and third (1,0,1). Owing to drop-out events,
other non-nested clonal patterns may appear such as (0,1,0), (0,0,1). All of these combinations define just three clonal
constraints on the Transition Map: on all cells in the clone (1,*,*), on the first sub-clone (*,1,*), and one on the second
sub-clone (*,*,1). The considerations above argue that only the (1,*,*) barcode should be treated as a constraint if the
division event partitioning the second and third barcodes occur after t1. And conversely, only the remaining two barcodes
should be used if the same division event occurred prior to t1. By including all three clonal barcodes, we effectively hedge
against this uncertainty, while making use of all available sub-clonal information, and also utilizing information where drop-
out events have occurred. Cells for which one may detect both the full clonal and the sub-clonal barcodes contribute to
more than one penalty in the cost function, thus more strongly enforcing sub-clonal constraints.

This approach is implemented by default in CoSpar. CoSpar accepts a representation of the clonal data as a cell-
by-barcode matrix, whether barcodes are strictly disjoint, or are instead nested reflecting cumulative barcoding/mutation.
We have provided an illustration of the cell-by-barcode matrix for both scenarios (Supplementary Fig. 3). For cumulative
barcoding, each independent variant in the tracer DNA is seen as a barcode (e.g., a given nucleotide at a given location,
as shown in Supplementary Fig. 3b). The resulting cell-by-barcode matrix encodes all the available lineage information in
the data.

This information is then utilized to enforce within-clonal transitions during each iteration of the CoSpar algorithm, de-
scribed in Supplementary Notes 1-3, and in the Methods. This is specifically achieved with Eq. (3) in Methods, which we
recall here gives the updated transition amplitude from state i to j as:

[PT ]ij = min
m

⇡̃
m
ijP

i0j0 ⇡
m
i0j0

where ⇡̃
m
ij the transition map associated with barcode m that only allows intra-clone transitions (thus incorporating clonal

observation). The normalization factor
P

i0j0 ⇡
m
i0j0 aggregates all transitions within a clone, and thus the clonal relationships

within sub-clones will be weighted more heavily than clonal relationships only within parent clones, because parent clones
are larger, and because the same cells within sub-clones will be subject to more than one clonal constraint (i.e., from both
parent and sub-clones).

We have explicitly tested the performance of CoSpar in dealing with cumulative mutations using the data set from (Biddy
et al.7). This dataset was generated with 3 rounds of barcoding (or tagging) at days 0, 3 and 13 of culture. These can be
considered as 3 independent mutations. In Supplementary Fig. 10f-h, we analyze these as nested barcodes. Using only
the nested clonal information on day-28, CoSpar achieves as high a performance as the “benchmark” of two-time-point
analysis.

Supplementary Note 5: Joint inference of clonal origins and transition maps using clonal data at a single time-point

The constraints used by CoSpar to learn a transition map are: 1) maximizing transitions between progenitors to clonally-
related cells at the end point; 2) coherence and sparsity. When clonal data is available only at a single later time point, one
must now simultaneously infer the identity of clonally-related cells at the initial time point. This problem becomes under-
determined. To identify a biologically-reasonable solution, we can impose an additional constraint by further demanding
a minimum global transport cost between the states at t1 and those at t2. This optimization problem now becomes fully
determined and closely related to that pioneered by LineageOT4, but with additional constraints of coherence and sparsity.

We are not aware of a fast and memory-efficient optimization to the joint problem of clonally-constrained, coherent,
sparse optimal transport. An optimal solution may be reached by iterating over the CoSpar and transport constraints



infinitesimally and sequentially, until a map converges. Because the iteration is still very slow, we propose an approximate
(non-convex) solution that utilizes the same constraints and gives rise to approximate transition maps in the benchmarking
examples shown in the paper (Figs. 4, 5). Specifically, we first learn a transition map by fully enforcing global optimal
transport. We then infer the most likely initial clonal states consistent with the initial map; and finally run CoSpar to learn
the map consistent with the initial clonal states.

This approach replaces simultaneous optimization with sequential optimization. Although it does not solve the original
problem, we nonetheless found that it generates transition maps with an accuracy comparable to those obtained from two
time-point inference. Further, it is robust to how we initialize the transition map using optimal transport. Using either a
Euclidean distance or a shortest-path graph distance, and using different entropic regularization parameters, we obtain a
robust result (Figs. 4, 5).

Supplementary Note 6: Transition map initialization with HighVar

The HighVar method provides an approach to initialize the joint inference of T and I(t1) (see Methods). The approach
is loosely motivated by the expectation that cells similar in gene expression between time points may share clonal origin.
This expectation can be violated; we use it only to initialize numerical optimization.

HighVar consists of three steps: 1) Select highly variable genes that are expressed at both t1 and t2; 2) For each
highly variable gene (indexed by m), threshold its expression to form a binary expression matrix x̂im 2 {0, 1} for all states
observed at t1 and t2 to generate pseudo clonal data Î(t1) and Î(t2) from the binary expression matrix; 3) Run CoSpar
with Î(t1) and Î(t2). The pseudo-clonal data Î(t1) and Î(t2) are discarded, and the resulting map T is used to initialize
CoSpar with the true clonal data.

For the first step, we use the SPRING gene filtering function filter_genes with an adjustable gene variability percentile
parameter HighVar_gene_pctl to select highly variable genes15. For the second step we discretize the gene expression of
each highly-variable gene, sequentially, with a gene-specific threshold ⌘m:

Îim = H

⇣
xi(m)� ⌘m

⌘
⇥ Zim,

where H(·) is the Heaviside step function (H(x) = 1 if x > 0; otherwise 0), Zim = [1 � H(
Pm�1

m⇤=0 Îim⇤)] sums over
previously considered genes to ensure that the same cell is not assigned to more than one pseudo-clone. The gene-
specific threshold ⌘m is chosen such that every pseudo clone has the same number of cells at each time point Nt/M ,
where Nt is the number of observed cells at time t and M is the total number of highly variable genes (i.e., pseudo clones).
In case Nt/M is not an integer, we use its ceil, i.e., dNt/Me, and stop the clonal matrix update when all cells are clonally
labeled.

Supplementary Note 7: Model comparisons for clonal fate prediction

In this note we show the application of Vuong’s test5 to test the null hypothesis that two competing models of clonal fate
inference are equally likely in light of an observed data set. Vuong’s test specifically considers non-nested models. This
note has been applied to evaluate model likelihoods resulting from two algorithms: LineageOT4 and CoSpar. The same
approach could in principle be generalized to evaluate predictions of other models discussed in this paper and in future
work. We introduced this test late in the study, and thus have not applied it to the majority of comparisons made in this
paper. Results derived from this analysis are shown in Supplementary Fig. 9.

To compare models, one must assess the Likelihood of each model given observed data D. The data consists of
a set of observed clones with cells occupying one of M fates. The k-th clone has Nk cells, which are distributed into
these fates as follows: ~nk = {n(1)

k , . . . , n
(M)
k } with

P
j n

(j)
k = Nk. The full dataset is D = {~n1, . . . ,~nZ} for Z clones in total.

We specifically wish to compare between models M1,M2 that predict the frequency at which cells in each clone should
be observed in each fate. For this study, the predictions are derived via an inferred Transition Map, and are thus predicted
from the state of a clone observed at an earlier time point. A Transition Map is learnt on a fraction of the clonal data, and then
fate predictions are evaluated using clones reserved as the test data set D. For the k-th clone, the prediction is encoded
by a vector ~pk = {p(1)k , . . . , p

(M)
k } with

P
j p

(j)
k = 1. The full predictions for one model are the set M = {~p1, . . . , ~pZ} for Z

clones in total.
To compare models, we first calculate the Likelihood of the data given the model, and then invoke Bayes’ theorem to

obtain model Likelihoods. The probability of observing the fate vector ~nk for the k-th clone, given a model M, is the



multinomial:

P (~nk|~pk) =
✓

Nk

n
(1)
k n

(2)
k · · ·n(M)

k

◆ MY

j=1

(p(j)k )n
(j)
k

We will assume that each clone is sampled independently, which is correct for the data sets described here. The probability
of observing the full set of clones D, given the full set of predictions M is thus the product of individual clone Likelihoods:

P (D|M) =
ZY

k=1

P (~nk|~pk).

In comparing models, we can treat the Likelihood of each model as: L / P (D|M)P (M) where P (M) is the prior belief
in the model. We take P (M) to be uniform for all models.

The above expressions allow calculating a Log-Likelihood Ratio (LLR) between two alternative models:

LLR = log

✓
L2

L1

◆
=

ZX

k=1

MX

j=1

n
(j)
k log(q(j)k /p

(j)
k )

Where p, q represent predicted frequency of cells in fate j in clone k in models M1,M2 respectively.
The question we wish to ask is whether a non-zero LLR represents a significant difference in the likelihood of the two

models. For nested models, the likelihood ratio test can be used to address this question. The case we are dealing with
here is one of non-nested models, which nonetheless address predictions on the same data. For such models, Vuong
derives an approach to estimate the probability (p-value) that of the observed LLR value, under the null hypothesis that the
two models are equally likely5. For readers’ convenience, we point out the intuition behind Vuong’s test. Consider each
individual data point – in this case each individual cell for which we predict future fate – as a separate test of the model.
We can define a log-Likelihood ratio (LLR) for the k-th cell (or clone) as:

�k = log

 
L(k)
2

L(k)
1

!
=

MX

j=1

n
(j)
k log(q(j)k /p

(j)
k ) .

Note that the overall LLR can be re-written in terms of �k, as LLR = Z ⇥ �̄, where �̄ is the mean of the individual test �k

values. Now we can consider the uncertainty in estimating �̄. With enough clonal observations, owing to the Central Limit
Theorem, then the distribution of �k values should be normal �̄ ⇠ N(0, SEM�̄) under the null hypothesis that the models
are equally likely. With this in mind, the Vuong test statistic is:

v =
�̄

��/
p
Z
,

with �k as defined above for each clone, �̄ = 1
Z

PZ
k=1 �k, and �� =

q
1

Z�1

PZ
k=1(�k � �̄)2. And the (one-tailed) p-value

is:

p = 1� normcdf(|v|) = (1� erf(|v|/
p
2))/2.

A version of this test has been implemented by Skipper Seabold at https://gist.github.com/jseabold/6617976.
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