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SUMMARY
Cellular lineage histories and their molecular states encode fundamental principles of tissue development
and homeostasis. Current lineage-recording mouse models have insufficient barcode diversity and single-
cell lineage coverage for profiling tissues composed of millions of cells. Here, we developed DARLIN, an
inducible Cas9 barcoding mouse line that utilizes terminal deoxynucleotidyl transferase (TdT) and 30
CRISPR target sites. DARLIN is inducible, generates massive lineage barcodes across tissues, and enables
the detection of edited barcodes in�70%of profiled single cells. UsingDARLIN, we examined fate biaswithin
developing hematopoietic stem cells (HSCs) and revealed unique features of HSCmigration. Additionally, we
established a protocol for joint transcriptomic and epigenomic single-cell measurements with DARLIN and
found that cellular clonal memory is associated with genome-wide DNAmethylation rather than gene expres-
sion or chromatin accessibility. DARLIN will enable the high-resolution study of lineage relationships and
their molecular signatures in diverse tissues and physiological contexts.
INTRODUCTION

Tracing cellular lineage history in animals has been a long-stand-

ing effort. Historically, labeling cells with distinguishable and her-

itable markers such as dyes has led to major discoveries in early

development and stem cell differentiation.1–3 However, this

approach is limited to tracking only small or pre-defined popula-

tions of cells. Retrovirally barcoding cells with synthetic DNA se-

quences has enabled analysis of much larger populations,4,5

although this requires ex vivo manipulation of cells. In vivo DNA

barcoding in mouse models has been achieved through the

use of randomly integrated transposons or recombinases that

create genetic diversity within a distinct locus, which revealed

a drastically different picture of hematopoiesis in vivo.6–10 How-

ever, these mouse models either have limited barcode diversity

or do not allow simultaneous interrogation of lineage and state

information in single cells.

The advent of CRISPR-Cas9 technology has created a new

avenue for lineage tracing where diverse DNA mutations can be

created within a defined locus through genome editing.11 The

mutational outcomes can be transcribed, thereby allowing joint
Cel
measurement of lineage and transcriptomic information in single

cells.12–14 In mice, these approaches have been used to study

early embryonic development15,16 and cancer progression.17,18

Applying the same tools, we developed Cas9/CARLIN, a stable

and genetically definedmouse line, which enables flexible induc-

tion at any point to generate diverse, transcribed lineage barco-

des across tissues.19

These and other single-cell lineage-tracing approaches have

generally faced three technical challenges: (1) low lineage-bar-

code capture efficiency in single-cell readout; (2) low efficiency

of introducing lineage barcodes; and (3) contamination from bar-

code homoplasy, where an identical editing event occurs inde-

pendently in two different cells. As a result of these challenges,

only �10% of profiled cells from the Cas9/CARLIN mouse

contain detected lineage barcodes that likely label individual

clones.19 Therefore, a higher-performing lineage-tracing mouse

line is needed to enable high-coverage single-cell lineage tracing

in adult tissues with millions of cells.

Single-cell lineage tracing with transcriptomic measurements

has been successfully used to identify early fate bias among pro-

genitors and find novel regulators of cell-fate choices.20–22
l 186, 1–17, November 9, 2023 ª 2023 Published by Elsevier Inc. 1

mailto:wangshouwen@westlake.edu.cn
mailto:fernando.camargo@childrens.harvard.edu
https://doi.org/10.1016/j.cell.2023.09.019


ll

Please cite this article in press as: Li et al., A mouse model with high clonal barcode diversity for joint lineage, transcriptomic, and epigenomic
profiling in single cells, Cell (2023), https://doi.org/10.1016/j.cell.2023.09.019

Resource
However, epigenomicmodalities such as chromatin accessibility

andDNAmethylation are known to play a crucial role in regulating

gene expression and maintaining cell identities.23–25 Epigenetic

changes are known to foreshadow changes in gene expres-

sion,26–29 suggesting that the earliest events for cell-fate choice

are unlikely to be captured using gene expression alone. This

view is supported by a recent state-fate lineage-tracing study

showing that the transcriptome of a cell alone is insufficient to

predict its fate outcome.21 To fully understand cell-fate choices

and the maintenance of cell identities, single-cell approaches

that integrate lineage, transcriptomic, and epigenomic informa-

tion will be necessary. Several recent studies have reported sin-

gle-cell measurement of either lineage and transcriptomic infor-

mation, lineage and epigenomic information, or transcriptomic

and epigenomic information.25,30–32 Although some multi-omic

studies have inferred lineage information using endogenous

DNA mutations,33,34 the inferred clones are low-resolution and

cannot be used to study lineage relationships at defineddevelop-

mental time points. Indeed, a method capable of simultaneously

profiling engineered lineage barcodes, the transcriptome, and

the epigenome in single cells has not been reported.

Here, we developed an improved lineage-tracing mouse line

(DARLIN) that has an extremely large lineage-barcode capacity

and highly efficient lineage recovery in single-cell assays, greatly

outperforming the Cas9/CARLIN model. Furthermore, we

extended existing approaches to simultaneously measure DNA

methylation, chromatin accessibility, gene expression, and line-

age information in single cells. We utilized DARLIN and its asso-

ciated analysis tools to address three distinct lineage-related

problems in hematopoiesis.

RESULTS

Cas9-TdT introduces more insertions than Cas9 upon
transient induction in CARLIN mice
CRISPR-Cas9-based DNA editing is prone to deletions, which

limits the resulting barcode diversity. Reanalyzing the editing

events observed among the 10 tandem target sites within the in-

tegrated locus (referred to as target array) from the published

Cas9/CARLIN mouse dataset19 (Figure 1A), we found that dele-

tions occurred more frequently than insertions (Figure 1B), with

1.5 insertion events and 2.5 deletion events per allele on

average. An allele generated by Cas9 editing had a median of

163 bp deleted out of its 270-bp unedited target array, implying

the deletion of 6 out of 10 tandem target sites (Figure 1C). By

contrast, an allele has only a median of 2 bp inserted (Figure 1D).

These large deletion events can lead to information loss and

generate degenerate alleles. Consistent with this, common al-

leles were enriched with deletion-only alleles, whereas rare al-

leles, which are required for confident assignment of bona fide

clones, preferentially resulted from DNA insertions (Figure 1E).

We reasoned that increasing the frequency of insertions could

greatly increase the generation of rare alleles, thereby increasing

overall allele diversity and barcoding capacity. Terminal deoxynu-

cleotidyl transferase (TdT) is a template-independent DNA poly-

merase that can insert random nucleotides at both overhang and

blunt 30 ends.35–37 A recent study in cell lines showed that co-

expressionofCas9andTdTgeneratesmore insertions in the target
2 Cell 186, 1–17, November 9, 2023
sites and leads to higher barcode diversity compared with Cas9

alone (Figure 1F).38 To test whether a similar strategy also works

in an organismal context, we hydrodynamically injected a plasmid

encoding either a Cas9-TdT fusion protein or native Cas9 into the

tail veins of adult mice carrying the target array (Figure 1A) and

analyzed the resulting allele editing in mouse livers with bulk

RNAsequencing (RNA-seq) after 1week (Figure1G).Weobserved

thatCas9-TdT expression resulted in fewer deletions but twice the

insertion events per allele than Cas9 expression (Figures 1H–1J).

Aggregating insertion events from all alleles, we also observed

more inserted nucleotides per allele upon Cas9-TdT expression

(Figure 1K), with all four nucleotides well-represented in the in-

serted sequences (Figure 1L). These data demonstrate that

Cas9-TdT introduces more insertions as well as fewer deletions

than Cas9 upon target-array editing in an adult mouse.

DARLIN: An inducible Cas9-TdT mouse line for high-
capacity lineage tracing
Having established that the Cas9-TdT expression leads to

improved lineage-barcode editing in an adult mouse, we set

out to generate an inducible germline mouse model that utilizes

Cas9-TdT for target-array editing. First, we created amouse em-

bryonic stem cell (mESC) line with a Dox-inducible Cas9-TdT

construct also carrying a CRISPR target array and cognate

gRNAs (Figure S1A). We validated that editing of the array in

thismESC linewas sensitive toDoxexposure (FiguresS1A–S1D).

We next engineered knockin mice with the tetO-Cas9-TdT

construct inserted into the Col1a1 locus.39 This line was crossed

with animals containing the gRNAs and Col1a1 target array (CA)

previously described in the Cas9/CARLIN system to generate

Col1a1tetO-Cas9-TdT/gRNA-Array:Rosa26M2-rtTA/+ mice for lineage

barcoding. We will refer to this particular line as DARLIN-v0

(Cas9-TdT CARLIN version 0; Figure 2A). To benchmark

DARLIN-v0 against the original Cas9/CARLIN mouse line, we

compared the allele editing observed in large numbers of granu-

locytes from each mouse line after 1 week of Dox treatment, fol-

lowed by another 3 days without Dox (Figure 2B; n = 7 mouse

replicates for DARLIN-v0 and n = 5 for Cas9/CARLIN).

Compared with Cas9/CARLIN, edited alleles from the DARLIN-

v0 mouse were enriched in rare alleles (Figures 2C and S1E).

Indeed, for mouse replicates with over 10,000 alleles, �65% of

alleles were observed only once (referred to as singleton alleles)

for DARLIN-v0, compared with �30% for Cas9/CARLIN (Fig-

ure 2D). For the same number of edited cells (i.e., UMIs), the

DARLIN-v0 mice exhibited 2.3-fold as many alleles as Cas9/

CARLIN (Figure S1F). Since the utility of an allele for clonal label-

ing depends on its occurrence frequency, we used themetric 2H,

where H is the Shannon entropy of the normalized allele fre-

quency across edited cells, to report the barcode diversity of

an ensemble of alleles.19 The Shannon allele diversity of

DARLIN-v0 alleles was �5 times that of Cas9/CARLIN alleles

(Figure 2E). Consistent with this, we observed that DARLIN-v0

not only had much fewer large-scale (>180 bp) deletions that

result in degenerate alleles (Figure 2F) but alsomore (Figure S1G)

and larger (Figure 2G) insertions. Considering all mutation events

across alleles, each insertion in Cas9/CARLIN was on average

accompanied by three deletions, whereas in DARLIN-v0, each

insertion was accompanied by fewer than one deletion
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Figure 1. Advantage of Cas9-TdT over Cas9 for generating lineage barcodes

(A) Schematic of CARLIN lineage-recording system (left), the target array (middle), and editing patterns (right).

(B–E) Reanalysis of published bulk granulocyte Cas9/CARLIN data.19

(B–D) Distribution of insertion or deletion events (B), total deletion length (C), or total insertion length (D) per edited allele.

(E) Histogram of allele UMI counts among edited alleles, which either only contain deletions or have insertions and possibly deletions. UMI, unique molecular

identifier.

(F) Target-array editing by a Cas9-TdT fusion protein.

(G) Experimental scheme to compare the target-array editing from Cas9 or Cas9-TdT protein.

(H) Box plot of the insertion-to-deletion event ratio among all edited alleles from Cas9 or Cas9-TdT mice. Horizontal lines of each box represent the minimum,

25th-, 50th-, 75th-percentiles, and maximum values.

(I–K) Distribution of deletion (I) or insertion (J) events per allele and total insertion length per allele (K).

(L) Insertion frequency of all four DNA nucleotides in edited alleles generated by Cas9-TdT.
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(Figure 2H). There were also more insertions across the 10 target

sites in DARLIN-v0 mice (Figures 2I and S1J), with all four nucle-

otide identities well-represented within these inserted se-

quences (Figure S1H). These data demonstrate that compared

with Cas9/CARLIN, the DARLIN-v0 mouse line achieves a larger

fraction of rare alleles and greater barcode diversity due to more

insertions and fewer large-scale deletions enabled by the Cas9-

TdT editing system.

DARLIN-v0 mouse line works across tissues and yields
>1 million alleles
We next sought to demonstrate that the DARLIN-v0 mouse can

work across tissues. We examined the editing patterns of the
target array in intestine, kidney, lung, liver, spleen, and gonad

via bulk RNA-seq (Figure 2B). The editing efficiency was >90%

across these tissues as compared with 30%–50% as reported

for Cas9/CARLIN,19 with only �4% background editing without

Dox induction (Figure 2J). The singleton-allele fraction was

�70% and was comparable across tissues over a broad range

of observed allele numbers (Figure 2K). Pooling alleles from all

tissue samples gave a similar singleton-allele fraction, suggest-

ing that individual tissue samples were dominated by distinct al-

leles. Indeed, within the same mouse, only 5% of lineage barco-

des were shared between the spleen, kidney, and intestine

(�30,000 alleles each), indicating that most alleles were relatively

rare (Figure 2L).
Cell 186, 1–17, November 9, 2023 3
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Figure 2. Characterization of DARLIN-v0 mice

(A) Schematic of DARLIN-v0 system. The mutant tetracycline reverse transactivator (M2-rtTA) expressed from the Rosa26 locus activates Cas9-TdT-WPRE

expression upon Dox administration, leading to editing in the target array. WPRE: woodchuck hepatitis virus posttranscriptional regulatory element.

(B) Experimental scheme to compare the target-array editing between DARLIN-v0 and Cas9/CARLIN.

(C–I) Comparison of the alleles generated in granulocytes of Cas9/CARLIN with those of DARLIN-v0.

(C) Histogram of UMIs per allele.

(D) Singleton-allele fraction as a function of observed alleles. Each point represents a mouse replicate except for the rightmost points.

(E) Shannon allele diversity as a function of total UMI counts (edited cells).

(F and G) Distribution of total deletion length (F) or total insertion length (G) per edited allele.

(H) Box plot of the insertion-to-deletion ratio.

(I) Relative UMI fraction of editing patterns across ten target sites.

(J–L) Evaluation of target-array editing in multiple tissues from DARLIN-v0.

(J) Observed editing efficiency.

(K) Singleton-allele fraction.

(L) Venn diagram of the allele overlap between three tissues.

(M) Observed alleles as a function of edited UMIs in DARLIN-v0. These points correspond to merged samples from increasing mouse tissues and their replicates.

ll

Please cite this article in press as: Li et al., A mouse model with high clonal barcode diversity for joint lineage, transcriptomic, and epigenomic
profiling in single cells, Cell (2023), https://doi.org/10.1016/j.cell.2023.09.019

Resource
Wenext estimated the clonal barcode diversity of the DARLIN-

v0 model. By progressively pooling alleles from an increasing

number of mouse tissues and their replicates, we observed
4 Cell 186, 1–17, November 9, 2023
that the number of distinct alleles increased linearly with the

number of edited cells (goodness of linear fit r2 = 0.97; Figure 2M),

suggesting little-to-no saturation. Pooling alleles across all
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available data from the DARLIN-v0 mouse line, we observed

5.23 105 unique alleles in total (Figure 2M), with a singleton frac-

tion of 0.62 (Figure S1K). The large fraction of singletons implied

that many more unobserved alleles would be detected if we

sample more cells.40 Because our sampling was far from satura-

tion, we could not directly calculate the maximum number of al-

leles that could be produced by the DARLIN-v0 mouse. We

therefore inferred the number of total alleles using the Chao1

estimator.40,41 This approach yielded an estimate of 1.3 3 106

possible alleles, a value at least 30 times greater than the re-

ported 44,000 total alleles reported for Cas9/CARLIN.19 To

conclude, our DARLIN-v0 mouse line is suitable for lineage

tracing in various tissues and has a large barcode capacity.

DARLIN mice contain three independent target arrays
To further increase the clonal barcode diversity for organism-wide

lineage tracing, we generated two additional mouse lines, each

with a distinct target array: one was integrated at the Tigre locus

(yielding the Tigre target-array [TA]) and the other at theRosa26 lo-

cus (Rosa26 target-array [RA]). Both TA and RA reused the same

10 target sequences from the original CA, such that they would

be edited by the existing 10 tandemgRNAs, but in different orders

(Figure S2A). We generated an additional tetO-Cas9-TdT knockin

mouse line carrying an independent copy of the 10 gRNAs used in

the original CARLIN construct, with the goal of enhancing barcode

editing. By crossing homozygous mice having all three target ar-

rays with homozygous Col1a1tetO-Cas9-TdT-gRNA/tetO-Cas9-TdT-gRNA:

Rosa26M2-rtTA/M2-rtTA mice, we obtained DARLIN-v1 mice (Fig-

ure 3A). Unless otherwise stated, all the data presented below

were generated from this DARLIN-v1 line, referred to hereafter

simply as DARLIN mice.

To evaluate the editing performance across the CA, TA, and

RA loci, we induced six adult DARLIN mice with Dox for

1 week and analyzed the alleles from bone-marrow granulocytes

with bulk DNA sequencing (Figure 3B). We found that the three

target arrays achieved a similar editing efficiency (Figure 3C),

comparable Shannon allele diversity (Figures 3D and S2B), as

well as �60% singleton-allele fraction (Figure 3E). We further

confirmed that the different arrays had similar editing patterns

(Figures 3F and S2C–S2E). These data were in agreement with

the above CA data from the DARLIN-v0 mouse (Figures 2C–2I).

We also observed that CA, TA, and RA had similar editing dy-

namics upon Dox induction in embryos, and they were similarly

saturated at�100%after 24 h of Dox treatment (Figures S2F and

S2G). We conclude that in DARLIN, TA and RA perform compa-

rably to the original Col1a1-based target array with respect to

editing efficiency and barcode diversity.

We also confirmed that the editing of the three arrays was in-

dependent of each other (Figure S2I). This implies that the

maximum theoretical number of barcodes in DARLIN could

reach �1018, assuming each locus can generate at least 106 al-

leles. Notably, this barcode complexity far exceeds the total

number of cells (�1010) in an adult mouse.

To identify rare alleles that can uniquely label a clone, we per-

formed an experiment to measure intrinsic allele frequencies

(Figure S3). We collected an allele bank with �105 alleles for

each of the three arrays, aggregated across three bulk DARLIN

mouse replicates. We inferred the generation probability r for
each of these alleles, which we then used to identify alleles

that were statistically unlikely to be contaminated by barcode

homoplasy and therefore likely to have labeled real clones in

other experiments within this study. At a false discovery rate

(FDR) of 0.01 for reliable clone identification, we estimated that

the alleles from our bank can label �104 reliable clones when

considering only one target array and�1012 clones if all three ar-

rays were to be used in combination (Figure S3D; STAR

Methods). In practice, the barcoding capacity can be greatly

expanded by including de novo alleles (i.e., alleles not found in

our relatively small allele bank). In fact,�80%of alleles observed

in our datasets from actual lineage-tracing experiments were de

novo alleles (Figure S5D).

DARLIN achieves superior single-cell lineage coverage
Because target arrays in DARLIN are transcribed, one can simul-

taneously profile the lineage barcodes and transcriptomes of

single cells. Transcriptomic information enables systematic res-

olution of cell states, which is crucial for understanding lineage

relationships in a heterogeneous population without conven-

tional sortingmarkers. However, only cells with lineage barcodes

that are detected, edited, and rare will be useful for downstream

lineage analysis to avoid barcode homoplasy (Figure 3G). We

therefore systematically evaluated the characteristics of single-

cell lineage tracing in the DARLIN mouse line.

We labeled DARLIN mice at E17.0 and generated a single-cell

lineage-tracing dataset of blood cell progenitors by sorting

Lin�cKit+ cells from skull bone marrow (Figure 3H). We obtained

6,094 cells after quality control (QC) (Figure 3I) and detected al-

leles from at least one target locus in 81% of cells, half of which

(overall 40%) contained at least two of three target loci (Fig-

ure 3J). The target array at the Tigre locus exhibited more effi-

cient capture due to its higher expression (Figures 3J and

S2H). Among these 6,094 cells, 3,839 cells (63%) had at least

one rare allele (Figure 3K), and this fraction was comparable

across the seven blood cell types in the skull (Figure 3L). We pro-

filed hematopoietic cells from four other tissues (left-leg-derived

bone marrow, liver, lung, and spleen) in single-cell assays (Fig-

ure 3H) and also observed �60% of cells with at least one rare

allele (Figure 3M).

Next, we systematically compared the single-cell lineage

readout between DARLIN and Cas9/CARLIN19 mouse lines. On

average, we detected expression from at least one lineage locus

in 80% of cells derived from the DARLIN mouse, compared with

�50% from Cas9/CARLIN (Figure 3N). Among the detected line-

age barcodes, �80% were further edited in DARLIN, compared

with �35% in Cas9/CARLIN, which was consistent with our ob-

servations of editing efficiency in mouse embryos (Figure S2J)

and adult mice (Figure 3C). Finally, among the edited cells,

�93% of cells from DARLIN mice had at least one rare allele,

whereas this fractionwas only 55% for Cas9/CARLINmice. In to-

tal, DARLIN mice achieved�60% of cells passing all three filters

(i.e., had an allele that was detected, edited, and rare), compared

with �10% in Cas9/CARLIN. Our assessment of Cas9/CARLIN

agreed with our previous assessment19 and was consistent

across two additional single-cell Cas9/CARLIN datasets

analyzed with our method (Figure 3N). Together, the above

data demonstrate that the DARLIN mouse line has superior
Cell 186, 1–17, November 9, 2023 5
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Figure 3. Characterization of DARLIN mice

(A) Genetic elements of the DARLIN system.

(B) Experimental scheme to compare the target-array editing in the three loci of DARLIN.

(C–F) Analyses of alleles generated from the three loci: editing efficiency (C), Shannon allele diversity as a function of detected UMIs (D), the singleton-allele

fraction as a function of observed alleles (E), and frequencies of editing patterns across the 10 target sites (F).

(G) Quality control (QC) pipeline for selecting single cells with reliable lineage barcodes.

(H) Single-cell lineage-tracing experimental design with DARLIN.

(I) UMAP embedding of the transcriptomes for the skull-derived Lin�cKit+ cells. HSC, hematopoietic stem cell; LMPP, lymphoid-biased multipotent progenitor;

MkP, megakaryocyte progenitor; Ery, erythrocyte; Baso, basophil; Neu, neutrophil; Mon, monocyte. UMAP, uniform manifold approximation and projection for

dimension reduction.

(J) Venn diagram showing the number of cells for which each type of target array or combination of these was detected.

(K) Cell number at each filtering step for the skull dataset.

(L and M) Fraction of cells for which a rare allele was detected from at least one target array, either for different cell types from the skull (L) or blood cells from

different tissues (M). Each bar is colored according to the percentage of cells with alleles at only a single locus or multiple loci (>1).

(N) Fraction of cells that passed each QC step (described in G) between DARLIN and Cas9/CARLIN. The DARLIN data are from (M), the Cas9/CARLIN data

generated in this study were collected from the head, tail, and trunk of a mouse embryo, and the published Cas9/CARLIN data (collected from bone marrow)

correspond to those of Figure 6 from Bowling et al.19
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single-cell lineage coverage and a barcode diversity that ex-

ceeds the number of cells in an entire adult animal.

Mapping cell-fate choices among unperturbed blood
progenitors in vivo

We next demonstrated the utility of DARLIN to study cell-fate

choice during developmental hematopoiesis. Several studies

have shown that hematopoietic stem and progenitor cells

(HSPCs) can be divided into subpopulations with functional het-

erogeneity,10,21,22,42 including subsets with distinct fate biases.

However, it is unclear when this fate bias is established during

development and what are the molecular features of these

biased HSPCs.

We re-analyzed our single-cell lineage-tracing data from skull-

derived bone marrow induced at E17.0 and collected in adult-

hood (Figure 3H). We identified six major cell types among the

6,094 profiled single cells: hematopoietic stem cells (HSCs),

lymphoid-biased multipotent progenitors (LMPPs), megakaryo-

cyte progenitors (MkPs), erythrocytes, neutrophils, and mono-

cytes (Figures 3I, 4A, and S4A). We integrated information from

the three target-array loci to assign a clone ID to each cell

(STARMethods). In total, we identified 1,034 distinct clones (Fig-

ure 4B): some clones occupied multiple cell fates (Figure 4C, left

panel), whereas others had only one observed fate outcome (Fig-

ure 4C, middle and right panel). With these data, we asked if

some HSPCs (HSCs and LMPPs) demonstrated differentiation

bias toward specific fates (Figure 4A).

The clonal coupling scores across major cell types (i.e., a

normalized correlation to measure how often two cell types

jointly appear within the same clone; STAR Methods) suggested

a strong lineage coupling between MkPs and HSCs (p < 0.001)

and between monocytes and LMPPs (p < 0.05) (Figures 4D

and S4B). This agrees with earlier reports that a subset of

HSCs can directly generate MkPs8,22,43–46 and that LMPPs are

primed to generate monocytes rather than neutrophils.21 In mu-

rine hematopoiesis, definitive blood progenitors arise at E10.5

with the formation of Runx1-expressing clusters within the

aorta-gonad-mesonephros (AGM) region in the embryo.47 At

around E11.5, these progenitors begin to migrate to the fetal liver

where they first undergo rapid expansion before colonizing the

bone marrow at around the time of birth (i.e., E19–E21). Consid-

ering that barcodingwas induced at E17.0, a developmental time

point when HSCs still reside in the fetal liver, our data suggest

that HSCs at this time already carry functional features that will

be evident even after their migration to the bone marrow. Thus,

MkP bias is likely to arise earlier than what has been previously

reported.48 We found that 48% of our 187 clones that both con-

tainedmultiple cells and included at least one HSPC had a single

clonal fate (Figure 4D), suggesting the possibility of early fate

bias. Inspecting those HSPCs that were clonally associated

with a single mature fate, we found that only MkP-biased clones

had distinct transcriptomic signatures (Figure 4E). We previously

developed CoSpar, a computational approach that utilizes

coherent and sparse lineage dynamics to robustly infer early

cell-fate choice.49 We applied CoSpar to infer early fate priming

by integrating transcriptomic and lineage information. Consis-

tent with the above observations, CoSpar predicted that MkPs

originate specifically from a subset of HSCs (Figure 4F, left
panel). Interestingly, CoSpar also predicted thatmonocytes orig-

inate predominantly from LMPPs (Figure 4F, right panel), which

agreed with our clonal coupling analysis (Figure 4C). Importantly,

we failed to infer such early fate bias when down-sampling our

DARLIN data to match the frequency of cells with detected, edi-

ted, and rare alleles in Cas9/CARLIN data (Figure S4D).

Next, to identify the early transcriptomic signature of MkP-

biased HSCs, we inferred the differentiation trajectory from

HSCs to MkPs using the above CoSpar predictions, then split

the MkP-biased HSCs into two populations based on their pseu-

dotime: early or late MkP bias (Figure 4G). Compared with HSCs

withoutMkPbias, the earlyMkP-biasedHSCsexhibited enriched

expression of genes involved inmaintaining long-termHSC iden-

tity (Mecom,Mllt3, andHlf), cell-cycle inhibition (Ifitm1,Txnip, and

Ifitm3), and megakaryopoiesis regulation (Tbxas1, Mpl, and

Meis1) (Figures 4H and 4I).22 We also identified many genes

without an established association with MkP bias in HSCs (Fig-

ure 4J), including the transcription factors Klf12, Sox5, Rora,

Pbx3, Pbx1, and Gata2 (Figure S4C). Taken together, our ana-

lyses demonstrated that the DARLIN mouse line generates

high-quality single-cell lineage-tracing data that resolves early

fate bias within HSCs, leading to the identification of gene signa-

tures of MkP-biased HSCs in unperturbed hematopoiesis in vivo.

Lineage relationships of blood cells across bones reveal
HSC migration dynamics over development and
adulthood
Next, we used the DARLIN mouse line to systematically evaluate

clonal dynamics of the migration of hematopoietic progenitors

over development and adulthood (Figure 5A). Although it is

appreciated that HSCs migrate from the fetal liver to the bone

marrow at around the time of birth, the clonality of bone-marrow

colonization and the extent of HSPC circulation during ontogeny

remain unclear. Similarly, the extent of migration and differentia-

tion in the adult bone marrow remains poorly explored. HSC cir-

culation in adulthood was previously studied in mice by pa-

rabiosis.50–52 In these studies, Wright et al. observed that up to

8% of HSCs migrated from one mouse to the other over

39 weeks50; however, a later study observed only 1%–2.5%

migratory HSCs.51 Parabiosis experiments are highly invasive

and lead to injury and inflammation, which might influence the

behavior of HSPCs in such studies. The high barcoding capacity

of the DARLINmodel presented uswith the unique opportunity to

address these questions at the level of individual clones in a

completely physiological context.

We induced DARLIN mice at different developmental stages

(adulthood, neonate, and E17.0). After 4 months, we dissected

bonemarrow from four locations (skull, spinal cord, left leg [i.e., fe-

mur, tibia, and fibula], and right leg) and used fluorescence-acti-

vated cell sorting (FACS) to sort long-term (LT) HSCs, MPPs,

myeloid progenitors (MyPs), and MkPs from each bone to profile

their lineage barcodes via bulk RNA-seq (Figure 5B, upper panel

and S5A). In a separate experiment, we also induced one

DARLINmouseatE10.0,waited2months, andprofiled the lineage

barcodes across major blood cell types sorted from four different

bones (Figure 5B, lower panel). In these bulk RNA-seq experi-

ments, a clone is a set of UMIs sharing the same (rare) lineage bar-

code, which may come from different bones or cell types.
Cell 186, 1–17, November 9, 2023 7
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Figure 4. Early fate priming among hematopoietic stem and progenitor cells (HSPCs)

(A) UMAP embedding of HSPCs (see also Figure 3I).

(B) Clonal profile of the normalized proportion of each annotated cell type (column) within each clone (rows). Only the 187 clones labeling HSPCs are shown.

(C) Selected clones with different fate outcomes. p values of clonal fate bias are shown for the latter two clones.

(D) Heatmap of clonal coupling scores across major cell types (STAR Methods). Coupling scores that are statistically significant are indicated

(*p < 0.05; ***p < 0.001).

(E) UMAP embedding of HSPCs, highlighting cells that were clonally associated with a single mature cell type.

(F) CoSpar-predicted probability of each HSPC to generate a mature cell type.

(G) Identification of early MkP-biased HSCs with CoSpar.

(H) Volcano plot of differentially expressed genes when comparing early MkP-biased HSCs with inferred HSCs with no MkP bias.

(I) UMAP embedding of HSPCs overlaid with expression of selected genes.

(J) Heatmap showing the expression of selected genes across different HSPC clusters and MkP. Z scores were calculated per gene within the four cell

populations.
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Figure 5. Lineage relationships of blood cells across bones

(A) Schematic of migration of blood progenitors across developmental stages.

(B) Experimental design to investigate HSCmigration dynamics. Leg bones include the femur, tibia, and fibula, whereas arm bones include the humerus, ulna, and

radius.

(C–F) Clonal analysis of bulk lineage-tracing data from week-8 induction.

(C) Heatmap of clonal coupling scores between cell types from each bone. (D) Shared clone fraction of each cell type across bones (*p < 0.05; **p < 0.01;

***p < 0.001; ****p < 10�4, t test).

(E) Shared clone fraction for each cell type over different thresholds of minimum allele complexity for excluding low-complexity alleles.

(F) Shared clone fraction when performing different amounts of UMI down-sampling.

(legend continued on next page)
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First, we determined to what extent hematopoietic progenitors

circulate across different bones during adulthood by analyzing

mice induced at 2 months of age. The presence of a clone in

more than one bone indicates inter-bone migration, by which

an individual HSC (or progenitor) divides and colonizes a

different bone-marrow niche. Calculating the clonal coupling

scores between all pairs of cell types from all sorted populations,

which accounts for clone identities and their sizes, we observed

that hematopoietic populations were strongly related in clonal

origin within each bone but not between bones (Figure 5C).

This is consistent with the idea that hematopoiesis is predomi-

nantly maintained locally within each bone in the adult, at least

within 4 months. Indeed, each of the clones resided predomi-

nantly in one bone, with only a small fraction of cells (UMIs) de-

tected in other bones (Figure S5B). Considering the fraction of

HSC-containing clones found in one bone (e.g., skull HSCs)

that are also detected in HSCs from other bones (irrespective

of clone size), we observed that �5% of HSC-containing clones

were shared with HSCs from at least one other bone (Figure 5D).

The overlap fraction increased significantly to �14% for MPPs (t

test, p < 10�3) and to �40% for MyPs (p < 10�3) (Figure 5D). To

exclude contamination from common alleles, we only used de

novo alleles (�80% of all alleles) from this experiment that

were not found in our pre-assembled allele bank with

�100,000 alleles (Figure S5D). Accordingly, the inferred shared

clone fraction was robust to (1) the mutational complexity of

the alleles considered (Figure 5E), (2) down-sampling of UMIs

(Figure 5F), and (3) read cutoffs used for allele calling (Fig-

ure S5E). We also evaluated the extent of HSPC migration with

age. Extending the chase period from 4 months to 1 year

increased the observed shared clone fraction in HSCs from

�5% to �12% (Figure 5J), suggesting that HSPC migration oc-

curs at a low level and accumulates with age. Overall, our data

extend the earlier findings of HSC circulation between bones50,51

and provide definitive evidence that this process actively occurs

in a native physiological context. Our findings also demonstrate

that less primitive populations like MPPs and MyPs circulate

more actively.

We next studied the dynamics of inter-bone migration in the

neonate. It is unclear whether the migration of post-birth HSCs

is more dynamic than those in the adult. Our results demon-

strated that at 4 months after birth, overall local hematopoiesis

was still prevalent even when barcoding was induced in the

neonatal stage (Figure 5G). There was, however, �11% shared

clone fraction of HSCs between the bones studied (Figure 5J),

higher than the �5% when induced in adulthood (p = 0.01).

Thus, our results suggest an increased rate of inter-bone HSC

migration post birth in comparison to adulthood, consistent

with an indirect study based on live imaging.53

We also induced at E17.0, a stage when HSCs are predomi-

nantly located in the fetal liver.54 Labeling at this stage will likely

result in effective barcoding right before birth, thereby mini-

mizing the effects of clonal expansion before migration. Remark-
(G–I) Heatmap of clonal coupling scores between cell types across bones for mi

(J–M) Shared clone fraction with other bones when editing was induced at differ

present, ‘‘�1’’ and ‘‘�2’’ indicate data from replicate mice. For the E10.0, E17.0, n

in (B), and for the adult (1 year) samples, they were 1 year, and the negative con
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ably, we still observed predominantly local hematopoiesis

across bones 4 months later (Figures 5H and S5B). To confirm

that we could detect delocalized hematopoiesis in DARLIN, we

labeled embryos at E10.0, with the goal of labeling clones that

would further expand in the fetal liver and colonize multiple

bones. In this context, as expected, the clonal coupling scores

of blood cells within the same bone were comparable to those

between different bones (Figure 5I), and an �80% shared clone

fraction between bones was observed for different cell types

(Figures 5J–5M). Thus, our observations suggest that HSCs

labeled in the late fetal liver stages (E17.0) predominantly seed

one single bone microenvironment and proliferate and differen-

tiate locally after birth.54 The shared clone fractions from induc-

tion at E17.0 were similar to those of induction at neonate but still

higher than those of induction in adulthood for HSCs, MPPs, and

MkPs (Figures 5J–5L). We also observed that MyPs had compa-

rable shared clone fractions when labeling across these stages

(Figure 5M). This difference was consistent with MyPs undergo-

ing more active circulation in the adult stage.

Importantly, when we induced barcoding in adult mice for only

3 days and then immediately profiled alleles, we observed only a

�1% shared clone fraction across cell types (Figures 5J and

S5C). This suggests that technical issues (i.e., background bar-

coding) have minimal effects on our observations. Additionally,

our results were corroborated by performing independent ana-

lyses using barcodes amplified from the CA and RA loci within

the samemice (Figure S5F). In conclusion, the high barcoding ca-

pacityof theDARLINmodel hasallowedus toobtainunique insight

into the process of HSC migration during development and

adulthood.

Camellia-seq simultaneously profiles chromatin
accessibility, DNA methylation, gene expression, and
lineage information in single cells
Integrating lineage tracing with single-cell transcriptomic mea-

surement enables systematic dissection of fate biases for a tran-

scriptomically heterogeneous population.20–22,49 The epigenetic

state of a cell also plays a crucial role in regulating its dynamics

and function.23–25 An integrative measurement of lineage, tran-

scriptome, and epigenome at the single-cell level would enable

a deeper understanding of how cell-fate choice is regulated

and how cell identity is maintained across different modalities.

Here, we developed a sequencing method to simultaneously

measure chromatin accessibility, DNAmethylation, gene expres-

sion, and lineage information in single cells (Camellia-seq) (Fig-

ure 6A). Camellia-seq extends scNMT-seq55–58 by incorporating

lineage barcode measurement. Briefly, a single cell is split into

nuclear and cytoplasmic fractions. Endogenous mRNAs and ex-

pressed lineage barcode transcripts are reverse-transcribed and

amplified from the cytoplasmic fraction via a modified STRT-seq

protocol.59,60 The nuclear fraction is treated with GpC methyl-

transferase, which preferentially methylates cytosine from GpC

dinucleotides within regions of open chromatin.61 The
ce induced at the neonate stage (G), E17.0 (H), and E10.0 (I).

ent developmental stages for HSC (J), MPP (K), MkP (L), and MyP (M). When

eonate, and adult samples, the�Dox waiting time durations were as described

trol samples were induced in adulthood and immediately profiled.
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Figure 6. Joint profiling of lineage, gene expression, chromatin accessibility, and DNA methylation with Camellia-seq

(A) Schematic of Camellia-seq.

(B) Experimental scheme to profile bone-marrow HSCs with Camellia-seq.

(C) Fraction of cells that passed each QC step described in Figure 3G.

(D) Box plots showing the number of observed UMIs (left) or genes (right) per cell for the scRNA-seq data generated with Camellia-seq. The corresponding UMIs

count per cell from the 103 Genomics protocol (Figure 3I) is also shown.

(E) The average chromatin-accessibility or DNA-methylation profile over the transcription start sites (TSSs) of �20,000 different genes in a cell.

(F) Box plot showing the genomic coverage across promoters, gene bodies, and CpG islands. Each GpC site must be covered byR3 reads, and CpG site byR

1 read.

(G) Pseudobulk chromatin accessibility and DNA methylation surrounding the TSS of Gata2 and Runx1. The bulk HSC ATAC-seq peaks from Li et al.54 are also

shown. ATAC-seq, assay for transposase-accessible chromatin with sequencing.
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endogenous DNAmethylation (methylated cytosine in CpGdinu-

cleotides) and accessible chromatin (methylated cytosine inGpC

dinucleotides) are then profiled with single-cell bisulfite

sequencing.62

We profiled HSCs with Camellia-seq to evaluate the quality of

each data modality. We induced lineage labeling in the DARLIN

mouse at E10.0, when HSCs have just formed in the AGM region,

and extracted HSCs (Lin�cKit+Sca1+CD48�) from 9-month-old

adult bonemarrow to performCamellia-seq (Figure 6B). Approx-

imately 50% of the single cells profiled with Camellia-seq had a

rare lineage barcode (Figure 6C). We observed a median tran-

scriptomic abundance of �100,000 UMIs derived from �3,000

genes per cell (Figure 6D). Using epigenomicmodalities from sin-

gle cells,we reproduced the stereotypic pattern thatDNAmethyl-

ation decreaseswithin 1 kb of the transcription starting site (TSS),

whereas the chromatin accessibility is greatest near the TSS and
decreases with an oscillatory pattern in the direction of transcrip-

tion initiation56 (Figure 6E). Furthermore, Camellia-seq achieved

a high genomic coverage: �70% of promoters and �90% of

the gene bodies were represented with at least 3 detected GpC

sites and 1CpGsite (Figure 6F). By aggregating single-cell epige-

nomic measurements into a pseudobulk dataset, we further

confirmed that the resulting chromatin-accessibility measure-

ments largely agreed with bulk ATAC-seq measurements of

HSCs from a published dataset54 (Figure 6G; Pearson r = 0.63

for displayed regions) and anti-correlated with DNA-methylation

measurements aroundpromoters in our data (Figures 6Eand6G).

DNA methylation maintains strong clonal memory of
HSCs over time
We utilized Camellia-seq to gain insight into the question of mo-

lecular memory in cell lineages: do cells from the same clonal
Cell 186, 1–17, November 9, 2023 11
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Figure 7. Transcriptomic and epigenomic memory of HSCs within each clone

(A) Experimental design (left) and classification of clonal memory (right).

(B) Distribution of clone sizes from profiled HSCs.

(C–E) UMAP embedding generated using either gene-expression (C), chromatin-accessibility (D), or DNA-methylation (E) data from Camellia-seq. Cells are

colored by their clone identities.

(F–H) Distribution of intra-clone similarity scores from 21 observed and 21 3 1,000 randomized clones, calculated using either gene expression (F), chromatin

accessibility (G), or DNA methylation (H). p values for each modality were calculated using the Wilcoxon rank-sum test.

(I) DNA-methylation levels at selected genomic loci across the top 10 largest clones.

(J) Clonal memory score for each modality across all mouse samples collected at different developmental stages.
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lineage retain molecular signatures indicating that they arose

from the same founder cell, despite potential changes in the

external cellular environment among the daughter cells from

the same clone? To exclude confounding factors like cell differ-

entiation, we focused on purified HSCs and profiled them from

the adult bone marrow with Camellia-seq, following Dox induc-

tion at E10.0 (Figure 7A, left panel). One hypothesis is that

HSCs within the same clone are indistinguishable from those
12 Cell 186, 1–17, November 9, 2023
of other clones when assessing their genome-wide molecular

states in an unbiased manner, a scenario for weak clonal mem-

ory, and the opposite case is that HSCs are more similar within

the same clone than across clones, a scenario of strong clonal

memory (Figure 7A, right panel). We sought to address this prob-

lem with our data and measured cell-cell similarity within individ-

ual clones with respect to gene expression, chromatin accessi-

bility, and DNA methylation.
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We restricted our analysis to clones containing R2 cells (21

clones in total) (Figure 7B). For eachof the threemolecularmodal-

ities, we separately performed unsupervised dimensionality

reduction and visualized the results via UMAP63 embedding

(STAR Methods), overlaying the clone identities on the embed-

ding. For the 10 largest clones, individual cells within the same

clone were largely scattered across the embeddings generated

using either gene expression or chromatin accessibility

(Figures 7C and 7D), suggesting weak clonal memory with

respect to these two modalities. Conversely, cells belonging to

the same clone were strongly co-localized within the embedding

generated from DNA methylation, suggesting stronger clonal

memory (Figure 7E). To quantify the strength of clonal memory

with respect to each modality, we calculated the similarity be-

tween any two cells using the Pearson correlation coefficient

and compared the average similarity within the same clone with

those from randomized clones having the same clone size distri-

bution. These analyses demonstrated that clonal memory with

respect to gene expression was barely significant (p = 0.049;Wil-

coxon rank-sum test; Figure 7F), and chromatin accessibility was

not significant at all (p = 0.34, Figure 7G). However, the clonal

memory with respect to DNA methylation was highly significant

(p = 1.2 3 10�10; Figure 7H). Because most of the observed

clones were small (i.e., 2–3 cells), we also evaluated each clone

individually, finding that 19 out of the 21 tested clones had signif-

icant intra-clone similarity with respect to their DNA methylation

(Figure S6A). We identified 279 genomic regions with differential

CpG methylation among clones (p < 0.05; Benjamini-Hochberg-

adjusted one-way ANOVA; Figure S6B). We provide three exam-

ples in Figure 7I, inwhich each clone has a different extent of DNA

methylation in selected genomic regions. These 279 differential

methylated regions were neither located near differentially regu-

lated genes (Figure S6C) nor preferentially associated with any

gene-ontology terms (Figure S6D), suggesting they represented

random genetic loci rather than functionally relevant regions.

We validated our findings of clonalmemorywith additional bio-

logical samples via Camellia-seq. These include HSCs that were

labeled with lineage barcodes for 36 h (AGM HSCs), 5.5 days

(fetal liver HSCs, two replicates) (Figure S6E), and an additional

replicate of HSCs traced for 10weeks. In our combined five data-

sets (mice),�750 cells successfully passedQC, comprising a to-

tal of 63 clones with R2 cells. We confirmed that chromatin-

accessibility, DNA-methylation, and gene expression measure-

ments captured stage-specific biological signals (Figures S6F–

S6H),54 and the editing efficiencies were close to 100% in each

mouse sample, with�55%of cells having valid lineage coverage

(Figures S6I and S6J). In these samples, we corroborated our

findings that the memory scores were significant with respect

to DNA methylation for each of the HSC stages (Figure S6K)

and were consistently higher than those from the other two mo-

dalities (Figure 7J). Thus, we conclude that DNA methylation

can retain the memory of clonally related cells much better than

either gene expression or chromatin accessibility.

DISCUSSION

Here, we describe DARLIN, a lineage-tracing mouse line with a

superior lineage barcoding capacity and enhanced single-cell
lineage coverage. Building on the current Cas9/CARLIN line-

age-tracing system, we first incorporated TdT to increase inser-

tion events in lineage barcodes and subsequently expanded

DARLIN to include three independent lineage-recording loci.

DARLIN can theoretically generate an estimated 1018 unique

lineage barcodes, has �90% barcode editing in the embryo,

and allows for �80% barcode capture in traditional single-cell

assays, leading to �60% of profiled cells having rare barcodes

for downstream clonal analysis. This translates into more useful

clones per sample, more cells per clone, and dramatically

reduced experimental costs for generating a dataset with suffi-

cient clonal information to address a biological question. Finally,

lineage barcoding in DARLIN can be induced at any time point

and across a wide range of tissues, and DARLIN is a stable

and genetically defined mouse line that can be shared across a

wide biological community.

The massive barcode diversity generated by DARLIN not only

increases the fraction of rare clones in our data but also enables

the study of large biological systems, such as adult tissue ho-

meostasis, inflammation response, and tissue injury and repair.

In many applications, profiling alleles from a single target-array

locus may already provide sufficient lineage information, with

measurements from the remaining loci providing additional

robustness.

The superior performance in DARLIN mice is likely due to the

improved genetic design (Figure 3A). The higher allele diversity,

apart from having three target arrays, is mainly due to the in-

crease of insertions from TdT and may also benefit from fewer

large-scale deletions that result in more degenerate alleles

(Figures 2F, S7A, and S7B; see Figures S7C–7E for our proposed

model to explain this observation). The enhanced editing results

from both the increased expression of Cas-TdT due to inclusion

of the woodchuck hepatitis virus posttranscriptional regulatory

element (WPRE) (Figure S7F) and also increased conversion of

Cas9-induced single-site cleavage into edited alleles with inser-

tions (rather than restoration of unedited sequences by direct

blunt-end joining; Figures S7C–S7E). In practice, we have

observed higher variability of editing efficiency when inducing

adult mice (Figures S1I and 3C) than embryos (Figures S2J and

S6I), suggesting the need to further improve the protocol for bar-

code induction in adult mice.

A high editing efficiency also helps to mitigate the impact of

background editing without Dox treatment. We observed �4%

background editing in an adult 8-week-old mouse (Figure 2J).

These alleles resulting from background editing could be further

edited at the time of Dox induction due to the high editing effi-

ciency of DARLIN and split into different sub-alleles that label

clones at the correct timing (Figures S7G and S7H). Combined

with our rare-allele filtering strategy, we have achieved a �1%

false inter-bone clonal sharing (background noise) in a negative

control experiment of adult HSC circulation (Figures 5J–5M

and S5C).

In our applications, we demonstrated first that the DARLIN

mouse line enables the study of early fate bias within native

HSCs at high resolution, leading to the identification of multiple

new genes correlated with MkP bias in HSCs. In our second

application, we studied the lineage relationship of hematopoietic

cells across different bones. Our data demonstrate HSC
Cell 186, 1–17, November 9, 2023 13
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inter-bone migration in a completely physiological context, with

a �5% shared clone fraction of HSCs between different bones

accumulated over 4 months after induction in adulthood and

higher fractions in aged animals. These observations support

the idea that HSCs continuously circulate at low levels in adult-

hood.50 Considering that we dissected only �70% of the mouse

bonemarrow, we likely underestimated the extent of HSCmigra-

tion. Our data also speak to the prevalence of local hematopoi-

esis even when induction was done either in the late fetal liver

or the neonate. Thus, our findings suggest limited migration

even after initial bone settlement. Barcoding models such as

DARLIN represent a novel approach to study cellular migration

in the bone marrow.

In parallel, we have established Camellia-seq to simultaneously

profile lineage barcodes, chromatin accessibility, DNA methyl-

ation, and gene expression in single cells. Using DARLIN, we

showed that Camellia-seq generates high-quality data for each

of the modalities. By focusing on HSCs that can self-renew, we

demonstrated that genome-wide DNA-methylation patterns, but

not chromatin-accessibility or gene expression patterns, stably

propagate within individual clones over multiple cell divisions.

Finally, our�750 HSCs profiled via Camellia-seq cover key devel-

opmental stages of hematopoiesis andwill be a valuable resource

to further understand hematopoiesis and, more generally, the

interplay between different modalities at the single-cell level.

Additionally, Camellia-seq is compatible with any lineage-

tracing approach where the lineage barcodes are transcribed

as mRNA.31 DARLIN mice may also be induced with Dox over

a series of time points to generate alleles with a hierarchical

structure to obtain more hierarchical cellular lineage relation-

ships of large numbers of cells during tissue development or ho-

meostasis. The lineage barcodes in DARLIN may also be

resolved spatially to understand spatial lineage dynamics in tis-

sues. Overall, the DARLIN mouse line and Camellia-seq method

provide a powerful tool for studying the relationships and under-

lying molecular mechanisms of diverse biological processes.

Limitations of the study
The target arrays in DARLIN still suffer from array deletions,

which might limit their use for lineage reconstruction across mul-

tiple cell divisions. This may be circumvented by generating

sequential mutation events along the recording array to produce

hierarchically labeled clones.64 Camellia-seq is currently a low-

throughput and costly plate-based method that requires deep

genomic coverage for each cell. A cost-effective and high-

throughput method would be desirable.
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Raw and processed data This paper GEO: GSE222486

Experimental Models: Cell Lines

DR4-MEFs ATCC SCRC-1045

KH2 mESCs Beard et al.39 N/A

JM8A3 mESCs Pettitt et al.65 N/A

Cas9–TdT mESCs This paper N/A

Cas9-TdT-gRNAs mESCs This paper N/A

Tigre-target-array (TA) mESCs This paper N/A

Rosa26-target-array (RA) mESCs This paper N/A

Cas9-TdT-gRNAs-TA mESCs This paper N/A

Experimental Models: Organisms/Strains

Mouse: B6;129S4-Gt(ROSA)

26Sortm1(rtTA*M2)Jae Col1a1tm1(tetO-cas9)Sho/J

Stuart H. Orkin Cat# JAX:029415; RRID:

IMSR_JAX:029415

Col1a1-target-array mouse: B6;129S4-

Col1a1tm4(CAG-EGFP)Fcam/Mmjax

Fernando Camargo MMRRC Strain #067061-JAX;

RRID: MMRRC_067061-JAX

Cas9-TdT mouse: B6;129S4-Gt(ROSA)

26Sortm1(rtTA*M2)Jae Col1a1tm1(Cas9-TdT)

This paper N/A

Cas9-TdT-gRNA mouse: B6;129S4-

Gt(ROSA)26Sortm1(rtTA*M2)Jae

Col1a1tm5(tetO-Cas9/Dntt*)Fcam/J

This paper Cat# JAX:038749

CA-TA-RA mouse: B6;129S4-Gt(ROSA)

26Sortm1(UBC-GFP)Fcam

Igs7em1(CAG-mCherry)Fcam Col1a1tm4(CAG-EGFP)

Fcam/J

This paper Cat# JAX:038750

Oligonucleotides

Primers, see Table S1 IDT N/A

Recombinant DNA

Plasmid: pCAG-Cas9 Addgene Cat# 48138; RRID: Addgene_48138

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Plasmid: pCAG-Cas9-TdT This paper N/A

Plasmid: pCAGGS-FLPe-puro Buchholz et al.66 N/A

Plasmid: pBS31 targeting vector Beard et al.39 N/A

Plasmid: pBS31-Cas9-TdT This paper N/A

Plasmid: pBS31-Cas9-TdT-gRNAs This paper N/A

Plasmid: px459 Addgene Cat# 48139; RRID: Addgene_48139

Plasmid: Tigre-targeting vector Addgene Cat# 92142; RRID: Addgene_92142

Plasmid: pCAG-mCherry-Tigre-

target-array

This paper N/A

Plasmid: Rosa26-targeting vector Addgene Cat# 74286; RRID: Addgene_74286

Plasmid: pUBC-GFP-Rosa26-target-array This paper N/A

Software and Algorithms

BioRender BioRender https://biorender.com/

FlowJo FlowJo, LLC https://www.flowjo.com/solutions/flowjo/

downloads

CoSpar v0.3.0 Wang et.al.49 https://cospar.readthedocs.io/

CARLIN pipeline Bowling et.al.19 https://gitlab.com/hormozlab/carlin

snakemake_DARLIN This study https://github.com/ShouWenWang-Lab/

snakemake_DARLIN

MosaicLineage This study https://github.com/ShouWenWang-Lab/

MosaicLineage

Bismark v.0.23.0 Krueger and Andrews67 https://www.bioinformatics.babraham.ac.

uk/projects/bismark/

CellRanger v.7.0.0 10X Chromium https://support.10xgenomics.com/

single-cell-gene-expression/software/

pipelines/latest/installation
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Fernando

Camargo (fernando.camargo@childrens.harvard.edu).

Materials availability
Plasmids generated by this study are available upon request and will be deposited to Addgene. Mouse lines generated by this study

are available upon request and will be deposited to The Jackson Laboratory.

Data and code availability
The accession number for the sequencing data reported in this paper is NCBI GEO: GSE222486. The snakemake pipeline for allele

preprocessing is available at https://github.com/ShouWenWang-Lab/snakemake_DARLIN while the companion python package for

downstream analysis is available at https://github.com/ShouWenWang-Lab/MosaicLineage.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
Six transgenic mouse lines were used in this study: iCas9,19 cCARLIN,19 Cas9–TdT, Cas9–TdT-gRNAs, Tigre-target-array (TA),

and Rosa26-target-array (RA). Among them, Cas9–TdT, Cas9-TdT-gRNAs, Tigre-target-array, and Rosa26-target-array were

generated in this study. Mouse generation is detailed in method details. For timed pregnancy experiments, we housed female

and male mice together overnight and checked the female the following morning for a vaginal plug. The detection of a plug marked

embryonic day 0.5 (E0.5). All animal procedures were approved by the Boston Children’s Hospital Institutional Animal Care and

Use Committee.
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ESC lines
We generated five mouse ESC (mESC) lines in this study: Cas9–TdT KH2, Cas9–TdT-gRNAs KH2, Tigre-target-array (TA) JM8A3,

Rosa26-target-array (RA) JM8A3 and Cas9-TdT-gRNAs-TA KH2 mESC line. See method details for more information.

METHOD DETAILS

Cas9–TdT Fusion Protein Design
The Cas9–TdT fusion protein was designed using the coding sequence of SpCas9, which contains an N-terminal 33FLAG peptide

followed by the SV40-NLS and aC-terminal nucleoplasmin NLS, and the coding sequence of the d138 TdTmutant, which contains an

N-terminal 63His tag. The fusion protein sequence was generated by replacing the stop codon of the SpCas9 coding sequence with

a linker sequence (GGGGSGGGGSGGGGS) followed by the entire d138 TdTmutant coding sequence. The corresponding 30 UTR for

this coding sequence includes a WPRE and b-globin poly(A) signal sequence. A DNA sequence containing the Cas9–TdT coding

sequence and its corresponding 30 UTR was synthesized by Vectorbuilder and cloned into the pCAG backbone.

Hydrodynamic Tail Vein Injection of Cas9–TdT or Cas9 Plasmid into CARLIN Mice
pCAG-Cas9 (Addgene Plasmid #48138) and pCAG-Cas9–TdT plasmids were prepared by endotoxin-free plasmid maxiprep kit (Ta-

kara Cat.#740424.10) and adjusted to a concentration of 10 mg/mL in DPBS (Life Technologies, Cat.#14190250). 20 mg (2mL) pCAG-

Cas9 or pCAG-Cas9–TdT plasmid was injected into CARLINmice (n = 2 for each condition) through hydrodynamic tail vein injections.

After one week, livers were collected from all four mice and homogenized in Trizol (Life Technologies, Cat.#15596018) with a tissue

homogenizer (IKA, 0003737001). Total RNA was subsequently purified with Trizol and quantified using a Nanodrop One spectropho-

tometer (Thermo Scientific, Cat.#13-400-518).

Generation of Cas9–TdT-related ESC Lines
Three Cas9–TdT-related ESC lines were generated in the course of this study: Cas9–TdT KH2 ESC line, Cas9–TdT-gRNAs KH2 ESC

line, and Cas9–TdT-gRNAs-TA KH2 ESC line. We used the KH2 ESC line that carries a donor FRT site in the Col1a1 locus and M2-

rtTA in the Rosa26 locus.39 KH2 ESCs were cultured on DR4-MEFs feeder layer (ATCC, SCRC-1045) and maintained in the following

medium, hereafter referred to as Standard ESCMedium: Knock-Out DMEM (GIBCO, 10829018), 15%ESCUSQualified Fetal Bovine

Serum (FBS) (GIBCO, 16141079), 100 U/mL Penicillin-Streptomycin (Pen-Strep) (GIBCO, 15140-163), 2 mM L-Glutamine (GIBCO,

25-030-081), MEM Non-Essential Amino Acids (NEAA) (GIBCO, 11140050), 0.1 mM b-Mercaptoethanol (GIBCO, 21985023) and

10 ng/mL Leukemia Inhibitory Factor (LIF) (EMD Millipore, ESG1107).

To generate the Cas9–TdT KH2 ESC line, we cloned Cas9–TdT into pBS31 targeting vector39 which contains a FRT site compatible

with theFlippase togenerate thepBS31-Cas9–TdTplasmid,whereCas9–TdT is regulatedby theTet-Ondoxycycline induciblepromoter

and contains a WPRE within its 30 UTR (Figure 2A, top-most row). We next integrated the Cas9–TdT-WPRE sequence into the Col1a1

locus through expression of a flippase recombinase construct (pCAGGS-FLPe-puro).39 Approximately ten million KH2 ESCs were nu-

cleofectedwith17mgof thepBS31-Cas9-TdTvector and8mgofpCAGGS-FLPe-purousing theAmaxaNucleofector II (settingA-23)with

the Mouse Nucleofector Kit (Lonza VPH-1001). After one day, 140 mg/mL hygromycin (GIBCO, 10687010) was used to select positive

clones. After tendaysof selection, individual cloneswerepickedandgenotypedusingCas9–TdTprimers andCol1a1-flankingprimers to

ensure thecorrect integration.We thenmeasuredprotein expressionofCas9–TdTuponDox induction for all positivelygenotypedclones

by western-blot. The Cas9–TdT KH2 ESC clone with the highest protein expression was used to generate the mouse line.

For the Cas9–TdT-gRNAs KH2 ESC line, we cloned the element containing ten tandem gRNAs downstream of Cas9–TdT with a

reverse expression direction to get pBS31-Cas9–TdT-gRNAs vector (Figure 3A, second row). Using the same protocol described

above, we integrated Cas9–TdT-gRNAs into the Col1a1 locus of KH2 ESCs. The selected Cas9-TdT-gRNAs KH2 ESC clone was

used to generate the mouse line.

For theCas9–TdT-gRNAs-TAKH2ESC line,Cas9–TdT-gRNAsKH2ESC linewas subjected toanother roundof targeting to introduce

mCherry-target array into theTigre locususinghomologous recombination (Figure3A,2ndand4th row). TheTigre-target-array,madeup

of identical guideRNA target sequences to the original Col1a1 target array in a different order, was incorporated downstreamof aWPRE

into the 3’ UTR region of a mCherry open reading frame, upstream of a SV40-poly(A) signal (construct synthesized by Genewiz). This

construct was cloned into Tigre-targeting vector (Addgene #92142) downstream of the CAG promoter to generate the pCAG-

mCherry-Tigre-target-array plasmid. 10 million Cas9-TdT-gRNAs KH2 ESCs were nucleofected using 25 mg linearized pCAG-

mCherry-Tigre-target-array vector (via AvrII endonuclease, NEB, #R0174L) and 25 mg px459 (Addgene # 48139) that contains a Tigre-

locus-targeting gRNA sequence (ACTGCCATAACACCTAACTT) to increase efficiency of homologous recombination.mCherry-positive

ESCswere selected by FACS after three days and reseeded onMEFs to grow for another week. Single ESC cloneswere picked up and

genotyped with primers specific for the Tigre locus and TA. The selected Cas9-TdT-gRNAs-TA KH2 ESC clone was used to study the

editing kinetics of Cas9–TdT (Figure S1).

Generation of Tigre and Rosa26 target-array ESC lines
pCAG-mCherry-Tigre-target-array was linearized via digestion with AvrII and introduced into JM8A3 mESCs by nucleofection.

Nucleofection was performed using 25 mg of linear pCAG-mCherry-Tigre-target-array plasmid together with 25 mg of px459
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(Addgene # 48139) carrying Cas9 and Tigre-locus-targeting gRNA to facilitate homologous recombination. Cells were selected with

puromycin for two days (2 mg/ml; Sigma-Aldrich #P9620) and cultured for a further 7 days beforemCherry-positive ESCcolonies were

picked for further culture. Colonies were then screened both for correct integration of the Tigre-target-array via Sanger sequencing

and for lack of Cas9 integration via PCR, to ensure the px459 plasmid was not stably integrated. JM8A3 mESCs were cultured in the

Standard ESCMedium (described above) further supplementedwith 30mMChiron (Sigma SML1046) and 10mMMirdametinib (Sell-

eck Chemicals S1036).

The Rosa26-target-array, which contains the same ten gRNA target sites as the original Col1a1-target-array but in a different order,

was incorporated into the 30 UTR of a GFP expression construct, downstream of a WPRE element and upstream of a SV40-poly(A)

signal sequence and 2xHS4 insulator elements, all under the control of a UBC promoter (construct synthesized by Genewiz). This

construct was cloned into a Rosa26-targeting vector (Addgene #74286) in the opposite orientation to the Rosa26 promoter to

generate the pUBC-GFP-Rosa26-target-array plasmid. The vector also contained a CAG-puro construct for mESC selection. The

plasmid was linearized via digestion with SgrDI (Thermo Scientific, #ER2031), and then 25 mg of linearized plasmid was introduced

into JM8A3 cells via nucleofection, as described above. Cells were selected with puromycin for nine days, after which GFP-positive

colonies were picked for further culture, and colonies were screened for correct integration of the Rosa26-target-array by Sanger

sequencing. Rosa26-target-array mESCs were cultured in identical conditions to those of the Tigre-target-Array mESCs.

Generation of Tigre and Rosa26 target-array mouse lines
One clone each of the Tigre and Rosa26 target-array ESCs were selected for injection into C57/BL6 blastocysts to form chimeras.

Chimera generation was performed by the Gene Manipulation & Genome Editing Core at Boston Children’s Hospital. High contribu-

tion male chimeras were selected for further breeding to C57/BL6 female mice to obtain F1 mice. These lines were crossed to each

other and to the Col1a1-target-array mice19 to generate triple-array (CA/TA/RA) homozygous mice.

Generation of Cas9–TdT Mouse Lines
The selected Cas9–TdT KH2 ESC clone was injected into C57/BL6 mouse embryos to generate mouse chimeras. High-contribution

male chimeras were backcrossed into C57/BL6 mice to confirm germline transmission of the edited genome. Offsprings from F1

were crossed to Col1a1-target-array mice to generate the DARLIN-v0 mouse line. To generate the DARLIN mouse line, we repeated

the above steps with Cas9–TdT-gRNAs KH2 ESC clone, and in the last step, we crossed the offsprings from F1 to mice homozygous

for all three target arrays (CA, TA, and RA).

Administration of Doxycycline in Mice
To label adult mice, doxycycline (Sigma-Aldrich, D9891) was administered via drinking water for one week (2 mg/mL, supplemented

with 10 mg/mL sucrose) and three intraperitoneal injections (50 mg/g) every other day during the same week. To label neonatal mice

(P2-P6), Dox was administered via drinking water for four days (2 mg/mL supplemented with 10 mg/mL sucrose) and two intraper-

itoneal injections (50 mg/g). To label mouse embryos, 50 mg/g Doxwas injected once into pregnant dams through a retro-orbital route.

Tissue Preparation
To sort pre-HSCs in AGM at E11.5, the AGM region was isolated as previously described,9,68,69 and CD31 and cKit antibodies were

injected into the aorta and incubated for 30minutes to specifically label blood clusters. We dissociated the AGM tissues using 0.12%

Collagenase (Sigma-Aldrich, C0130-500MG) at 37 �C for 15 minutes to get the cell suspension and filtered the cell suspension

through a 40-mm strainer.

To prepare blood populations from fetal livers at E15.5, the livers were dissected and put in DPBS supplemented with 10% FBS

(Gibco, A3160401) and 100 U/mL Pen-Strep. We gently pipetted twenty times to dissociate fetal livers, and then removed erythro-

cytes by incubating the material in RBC lysis buffer followed by collection of intact cells upon passing the lysate through a 40-mm

strainer. To enrich for HSPCs, we conducted blood lineage depletion using a biotin-conjugated lineage antibody cocktail (Miltenyi

Biotec, 130-090-858) followed by incubation with anti-biotin magnetic beads (Miltenyi Biotec, 130-090-858) and subsequent mag-

netic column depletion.

To isolate blood populations from adult bonemarrow, different bones (spinal cord, skull, leg bone (including femur, tibia and fibula),

and arm bone (including humerus, ulna and radius)) were dissected and crushed in DPBS supplemented with 2% FBS (Gibco,

A3160401) and 100 U/mL Pen-Strep. Erythrocytes were then removed as described above. Blood lineage depletion was performed

to enrich HSPCs or Lin�Sca1+cKit+ cells (LSKs).

FACS
Cell suspensions were processed using FC Receptor Block (eBioscience, 48-0161-82), stained and sorted based on the following

antibody panels: preHSC: CD31+cKit+Ssea1�; LT-HSC: Lin�cKit+Sca1+CD150+CD48�; HSC: Lin�cKit+Sca1+CD48�; MPP:

Lin�cKit+Sca1+CD150�CD48+; LSK: Lin-cKit+Sca1+; LK: Lin-cKit+; MkP: Lin�cKit+Sca1�CD150+CD41+; Erythrocyte progeni-

tor: Ter119+; Granulocyte: CD11b+Ly6G+; Monocyte: CD11b+Ly6G�; and B cell: B220+CD11b�Ly6G�. Lin- stands for Ter119-

B220-CD19-CD3-CD11b-Gr1- cells. For AGM and fetal liver samples, an anti-CD45 antibody was also used to label blood cells.

DAPI was added prior to sorting to exclude dead cells. Cell sorting was performed using a BD FACSAria II sorter.
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Bulk Lineage Array Library Preparation
To generate lineage array libraries from tissues or cells, we used bulk RNA or DNA as startingmaterial and a nested PCR approach to

perform targeted amplification with Q5 High-Fidelity DNA Polymerase (New England Biosciences, M0491L). The primers used in the

following protocols were included in the Table S1. We used 1.5X Ampure XP beads (Beckman Coulter, A63881) to purify the PCR

product from each step once except the final indexing PCR product (0.8X, twice purification). The final indexing libraries were pooled

and quantified (Kappa Biosystems, KK4835), and sequenced on an Illumina MiSeq using paired-end 500-cycle v2 kits (Read 1: 250

cycles; i7 Index: 8 cycles; Read 2: 250 cycles; Illumina, MS-102-2003) with 5% PhiX sequencing control v3 (Illumina, FC-110-3001).

To amplify Col1a1 target array (CA) array–containing mRNAs from mouse livers (Figures 1G–1L), 500 ng of total RNA was reverse

transcribed with SuperScrit III (Invitrogen, 18080093) and the CA-specific primer (RT_CA_10UMI). After cDNA purification, the first

PCR reaction was performed for 15 cycles with the primers NGS_F and NGS_CA_R1. The resulting PCR product was purified,

and then the second PCR reaction was performed for 15 cycles with the same NGS_F primer and a nested NGS_CA_R2 primer.

The PCR product was further purified and used to perform an indexing PCR for 8 cycles using the primers including in this kit

(New England Biosciences, E7500S).

To amplify the Tigre target array (TA) array from genomic DNA of ESCs (Figures S1A–S1D), �105 cells were pelleted and resus-

pended in 20 ml of lysis buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% IGEPAL CA-630 (Sigma-Aldrich, I8896),

0.5 mg/ml Qiagen Protease (Qiagen, 19155)). Then we performed a UMI-tagging reaction using the released genomic DNA, Q5

High-Fidelity DNA polymerase, and the RT_TA_10UMI primer.11 Following purification, a targeted PCR (NGS_F and

NGS_TA_R1,15 cycles) and a nested PCR (NGS_F andNGS_TA_R2,15 cycles) were performed. Finally, an indexing PCRwas carried

out (8 cycles; New England Biosciences, E7500S).

To prepare CA-, TA-, and RA-array libraries from the total RNA of blood cells, reverse transcription was performed with Superscript

III and a mixture of three primers (RT_CA_12UMI, RT_TA_14UMI, and RT_RA_14UMI). After cDNA purification, we amplified each of

the three target arrays individually by performing three separate PCR reactions for each sample. This was done due to the differences

in expression between each of the three arrays, which would lead to preferential recovery of only the highly expressed TA array if the

PCR were pooled. We first amplified the CA-, TA-, and RA-array libraries for 15 cycles using a 1/4th of the purified cDNA, the NGS_F

primer, and either the NGS_CA_R1, NGS_TA_R1, or NGS_RA_R1 primer. The three PCR products were purified, and each was sub-

ject to a second PCRwith 15 cycles, again using the NGS_F primer and either the NGS_CA_R2, NGS_TA_R2, or NGS_RA_R2 primer.

Each of the resulting PCR products was further purified and used to perform an indexing PCR for 8 cycles using the primers included

in this kit (New England Biosciences, E6609S).

Single-Cell Transcriptome and Lineage Array Library Preparation Based on 10X Genomics
We used the Chromium Next GEM Single Cell 30 Kit v3.1 (10X Genomics, PN-1000268) and the Dual Index Kit TT Set A (10X Geno-

mics, PN-1000215) to generate the single-cell, whole-transcriptome libraries, according to protocols provided by the manufacturer

(https://cdn.10xgenomics.com/image/upload/v1668017706/support-documents/CG000315_ChromiumNextGEMSingleCell3-_

GeneExpression_v3.1_DualIndex__RevE.pdf). The libraries were sequenced on an Illumina NovaSeq 6000 by Novogene with the

paired-end 150 bp kit (Read 1: 28 cycles; i7 Index: 10 cycles; i5 Index: 10 cycles; Read 2: 90 cycles).

In parallel, we used KAPA HiFi HotStart ReadyMix (Roche Applied Science, 07958935001) to amplify single-cell CA/TA/RA libraries,

and 1.5XSPRISELECTREAGENTbeads (BeckmanCoulter, B23318) to purify the PCRproduct fromeach stepexcept the final indexing

product where we used 0.8X beads. Following the cleanup of cDNA (Step 2.2 of the above-referenced manufacturer’s protocol), we

amplified the triple target arrays separately as described in the ‘‘Bulk Lineage Array Library Preparation’’ section, with the following dif-

ferences: 1.) Each of the first PCR reactions used 5–10 ng of purified cDNA. 2.) Each of the three first and second PCR steps was per-

formed for 10 cycles and used the P5-PR1 primer instead of the NGS_F primer. Finally, the indexing PCR was conducted using the

primers included in this kit (8 cycles; New England Biosciences, E6609S). 10X single-cell lineage array libraries were quantified using

KAPA Library Quantification Kit and sequenced on an Illumina MiSeq using paired-end 500-cycle v2 kits (Read 1: 28 cycles; i7 Index:

8 cycles; Read 2: 350 cycles; Illumina, MS-102-2003) with 10% PhiX sequencing control v3 (Illumina, FC-110-3001).

Single-Cell Camellia-seq Library Preparation
Individual cells were directly sorted into 96-well plates containing the mild lysis buffer and a methyltransferase reaction mixture and

incubated for 30 minutes at 37 �C. Dynabeads Myone Carboxylic Acid (Invitrogen, 65011) were used to capture nuclei and the su-

pernatant containing released RNA was transferred to a separate 96-well plate. The Dynabeads containing genomic DNA were used

to carry out single-cell bisulfite sequencing (scBS-seq)62 to profile DNA methylation and chromatin accessibility. The RNA part was

processed with a modified scSTRT-seq59,60 to profile the whole transcriptome and cellular lineages. CA/TA/RA libraries were ampli-

fied from the cDNA using primers listed in Table S1.

QUANTIFICATION AND STATISTICAL ANALYSIS

Computational analysis overview
Analyses of lineage-tracing datasets generated using the DARLIN-v0 and DARLIN mice were performed by first identifying the com-

plete set of distinct editing events (referred to as alleles or clonal barcodes) from the reads containing target array sequences, and
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then further estimating which of these alleles were likely to have been generated only once in the experiment (referred to as rare

alleles) and therefore represent clonally related cells. For the scRNA-seq experiments (Figures 4, 6, 7, S4, S6, and S7), all three

target-array loci were considered simultaneously to assign individual cells to their respective clones, while for the bulk RNA-seq ex-

periments (Figures 5 and S5) only a single target array locus was used. Finally, these clonal assignments were used to perform the

reported analyses, which include the calculation of clonal coupling scores between different cell types and/or tissues, the shared

clone fraction for cell types in different tissues, fate-bias prediction for HSPCs, and evaluation of clonal memory using gene expres-

sion, DNA methylation, and chromatin accessibility (Figure S3A). We constructed an allele bank with a large collection of alleles to

help to identify rare alleles (Figure S3B).

Allele preprocessing
The CARLIN pipeline (https://gitlab.com/hormozlab/carlin) was developed previously for the Col1a1 target array (CA) in the Cas9/

CARLINmouse.19 To call alleles from bulk or 10X single-cell target array sequences in our analysis, we updated the CARLINworkflow

with minor modifications: 1) we expanded it to include the two additional target arrays (TA and RA) present in DARLINmice by adding

corresponding configuration files to the package; 2) we retained alleles supported by at least 3 reads per UMI or cell barcode, unless

otherwise stated. The updated pipeline can be found at https://github.com/ShouWenWang-Lab/Custom_CARLIN. To call alleles

from single-cell target array sequences from Camellia-seq, we developed a pipeline inspired by the original CARLIN pipeline with

additional consideration for the sequencing errors from heterogeneous library size across cells, where the read cutoff was set to

be 5 (https://github.com/ShouWenWang-Lab/snakemake_DARLIN/blob/master/QC/single_cell_CARLIN-scCamellia.ipynb).

We further developed a snakemake pipeline snakemake_DARLIN (https://github.com/ShouWenWang-Lab/snakemake_DARLIN)

to automate the generation of alleles associated with each UMI or cell barcode from fastq files. This tool enables the processing of

multiple samples in parallel. Finally, because the CARLIN pipeline was written in MatLab, we have developed a companion Python

package MosaicLineage (https://github.com/ShouWenWang-Lab/MosaicLineage) so that these and any further generated DARLIN

lineage data can be more easily analyzed using other single-cell analysis packages developed in Python.

Clone identification: theory
Suppose thatM0 distinct lineage barcodes have been detected, with each lineage barcode having a particular generation probability.

Many of these barcodes will correspond to individual clones of cells, while others with a greater generation probability will indepen-

dently occur within multiple clones (i.e., due to barcode homoplasy). Among theM0 total barcodes, we wish to identifyM clonal barc-

odes whose generation probability r% r�, such that the false discovery rate (FDR) awithin theseM barcodes is below an appropriate

threshold. Here, the FDR is defined as the fraction of the M (% M0) selected barcodes that erroneously label more than one clone.

Below, we calculate the FDR associated with a given r�.
Assume that the total number of clones that are associatedwith ourM barcodes isMc (RM). In order to label each of theMc clones,

we sampleMc barcodes with replacement in a linear order out of the entire pool ofMT possible barcodes, and the probability asso-

ciated with j-th sampled barcode is rj (1% j%Mc). Note that rj % r� due to our filtering. When r� is sufficiently small, andM � MT ,

each newly sampled barcode is very likely different from previously sampled barcodes. Therefore, at j-th sampling, the probability of

sampling a barcode that has already been sampled is approximately
Pj� 1

k = 1rk . Therefore, the average number of barcodes that erro-

neously label more than one clone is

m = C
XMc

j = 1

 Xj� 1

k = 1

rk

!�����rk % r�D =
XMc

j = 1

Xj� 1

k = 1

Crk
��rk % r�D =

1

2
McðMc � 1ÞCr��r % r�D:

Here, Crjr % r�D is the average barcode generation probability below the cutoff r�. Therefore, in order to satisfy FDR m= M% a,

we have

Cr
��r % r�D %

2aM

McðMc � 1Þz
2a

M � 1
;

where we have applied the approximation that Mczð1 +aÞMzM when a � 1, which is the regime of interest. Crjr % r�D can be

calculated from the empirical allele bank at a given cutoff r�;M can be obtained from the observed data after removing barcodes with

generation probability above r�; and the FDR cutoff a can be tailored for each study.

Our above formulation deals with the general problem of clone identification when the barcode generation probability is hetero-

geneous. In the simpler case where the barcode generation probability r is homogeneous (as in the case of introducing lineage

barcoding with lentivirus20,21), we have M%1+ 2a=r, or 1+ 2aK, where K = 1=r is the total available barcodes in the barcoding

library.

Given an allele bank, the maximum number of clones that it could reliably label at a fixed FDR a (Figure S3D) is given by

max
r�

min
n

2a
Crjr% r�D

+ 1;Nðr�Þ
o
, where Nðr�Þ is the total number of observed alleles in the bank that have allele probability r% r�:
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Allele bank construction
We use the term ‘‘allele bank’’ to refer to a collection of observed alleles and their associated frequencies. An allele bank was gener-

ated from bulk RNA-seq libraries prepared for each of the three target arrays from �300,000 granulocytes from each of the three

DARLIN mouse replicates (Figure S3B). These libraries were prepared shortly (3 days) after Dox treatment, so that the abundance

of alleles within the data would reflect the frequency of their generation in cells, with little contribution from differential expansion

among labeled clones. In total, this allele bank contained �110, 62, and 37 thousand alleles from each of the CA, TA, and RA

loci, respectively (Figure S3C). We further inferred the generation probability of each detected allele in this data (see below). This

DARLIN allele bank is available within the MosaicLineage package described above. For Cas9/CARLIN, we used the alleles from

the allele bank reported in the original study,19 which was also generated by performing bulk RNA assays from three mouse repli-

cates, each with�300,000 granulocytes. This Cas9/CARLIN allele bank was only used in Figure 3N in this study to select rare alleles

for both Cas9/CARLIN datasets involved.

For an allele i from source s˛ {CA, TA, RA, Cas9/CARLIN}, we inferred its generation probability rsi by normalizing its total UMI

count Xs
i across the three mouse replicates. Here, rsi = gsX

s
i =

 P
j

Xs
j Þ, where gs is a source-specific pre-factor to correct bias arising

from insufficient sampling. We fixed gCA = 1, and determined gs for other allele sources by fitting it to ensure that the same allele

generation probability gave roughly similar barcode homoplasy probability (see homoplasy probability inference) among threemouse

replicates for each allele source (Figure S3I). For de novo alleles, i.e., alleles not detected in our allele bank, we assign them a prob-

ability of zero. So far, we have inferred the allele/barcode generation probability for each of the target arrays separately. When alleles

from more than one locus are detected in single cells, we concatenated them into a single (joint) lineage barcode, with a probability

r = rCArTArRA, where rCA, rTA, and rRA are the barcode generation probability associated with alleles detected from each of the CA,

TA, and RA loci, respectively. The inferred allele generation probabilities from our granulocyte-derived allele bank behave as ex-

pected across different tissues: alleles detected inmultiple replicates of other tissues on average have higher generation probabilities

in the allele bank than those detected in a single replicate (Figure S3E).

We have estimated that at FDR a = 0:01, our current allele bank enables to reliably label �104 clones using just one target array,

�108 clones using two target arrays, and �1012 clones if all three arrays are used (Figure S3D). Furthermore, de novo alleles, if de-

tected, can also be used to reliably label clones, which greatly expands the barcoding capacity of DARLIN. Indeed,�80%of sampled

barcodes from the TA locus in a new experiment will be de novo alleles (Figure S5D).

Finally, we note that the inferred allele generation probability rsi is almost certainly overestimated for the rarest alleles within the

bank, due to our small sampling size in the allele bank. As a result, the number of identified alleles that can reliably label individual

clones at a given FDR cutoff are likely more conservative (i.e., lower) than the true value. Indeed, as more DARLIN datasets are pro-

duced in systems with minimal clonal expansion (such as granulocytes), it will be possible to identify more DARLIN alleles that can be

used for reliable clonal labeling in a given experiment.

Homoplasy probability inference

Here, we describe our method to infer the intrinsic homoplasy probability P
s

i of an allele i from source s by considering both the total

UMI count Xs
i of this allele across the three replicates, and the number of mouse replicates Ns

i in which this allele was observed (Fig-

ure S3C). We define homoplasy probability of an allele to be the likelihood that this allele, already detected, will be observed in >1

mice of the three mouse replicates. Below, we will drop s in our notations just for simplicity.

Although Xi and Ni both positively correlate with the probability of an allele to be generated multiple times in a lineage-tracing

experiment, thus resulting in barcode homoplasy, these two quantities may be influenced by target array expression or library

sequencing depth. In fact, we observed that the array at the TA locus has �3-fold greater expression compared to those at either

the CA or RA loci. Our goal is to infer the intrinsic homoplasy probability Pi that accounts for the difference in both the target-array

expression and the library sequencing depth between the CA, TA, and RA loci. We exclude unedited alleles in this analysis as their

UMI counts depend on editing efficiency, which may skew the analysis.

We assign a homoplasy score si = 0 for allele i if Ni = 1 and si = 1 if Ni > 1. Then, to mitigate sampling noise, we average si among

alleles with the sameUMI count Xi to obtain a smoothed scorePi, whichwe refer to as the observed homoplasy probability (for a large

X, theremay be few alleles with the sameUMI count, andwe resort to local averaging among alleles with a similar X). As expected, we

find that P increases with X, and furthermore fully spans the interval between 0 and 1 for all three loci. However, the rate by which P

increases with respect to X was different for all three loci (Figure S3F), presumably due to some combination of differences in expres-

sion and sequencing depth between these loci.

We account for sequencing depth by normalizing the UMI count of each allele with the total count of edited UMIs from a given

locus. This is achieved by studying the relationship between P and the cumulative UMI fraction zðPÞ =

�P
i

XiHðPi <PÞ
�� P

i0
Xi0 ,

i.e., the fraction of UMIs associated with edited alleles that have an observed homoplasy probability <P, where HðxÞ = f1 if the
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condition x is true; 0 otherwise}. Indeed, we find that alleles fromCA and RA loci, which have comparable expression (Figure S2H) yet

different sequencing depths (Figure S3F), have the same relationship between P and z (Figure S3G), while alleles from TA have higher

P at the same z due to their higher expression (Figure S2H).

We expect that, after accounting for expression differences to obtain the intrinsic homoplasy probability P, alleles from the three

loci should have the same relationship between P and z, i.e., PCAðzÞ = PTAðzÞ = PRAðzÞ (Figure S3H). For simplicity, we use the

expression of alleles from the CA or RA loci as a reference. In this definition, the observed homoplasy probability in the CA or RA

loci is the intrinsic homoplasy probability, i.e., PCAðzÞ = PCAðzÞ and PRAðzÞ = PRAðzÞ. We introduce a mapping function fð $Þ that
can map PTAðzÞ to PTAðzÞ, i.e. fðPTAðzÞÞ = PTAðzÞ. Combining the above relations, the mapping function can be solved from

fðPTAðzÞÞ = PCAðzÞ. We find that fðxÞzx=3, which is consistent with the fact that alleles from the TA locus have about 3 times the

expression of those from CA or RA loci (Figure S2H).

Clone identification: practice
Below, we discuss the choice of barcode generation probability cutoff r� in each case.

1) For technical evaluation of single-cell lineage coverage (Figures 3N, 6C, and S6C), we wanted to obtain a metric that is inde-

pendent of the sampling size. Therefore, we used the same cutoff r� = 2310� 5 across different experiments and for alleles

from different sources (CA, TA, RA or Cas9/CARLIN) to obtain the fraction of rare alleles. This cutoff was selected as we ob-

tained �10% trustable clonal cells in the published Cas9/CARLIN single-cell dataset (Figure 3N), consistent with the report in

the original paper, suggesting a similar filtering stringency.

2) For Figures 4 and S4, we set r� = 2310� 5 (same as above), which was derived using our above equation using M = 1000

clones and a = 0:005. In this application, we also excluded alleles detected in more than one mouse replicate in our allele

bank. For Figures 6, 7, S6, and S7 (excluding Figures 6C and S6C), we set r� = 23 10� 4, which was derived with M =

100 clones and a = 0:001 (We detected �100 clones per embryo when induction at E10). In both applications, we integrated

alleles detected in single cells across CA, TA, and RA loci to determine which cells belonged to which clones. To do this, we

constructed a graph in which each node represents a cell, with vertices connecting pairs of cells that share an allele (from CA,

TA, or RA) with generation probability r< r�. This procedure yielded a graph composed of many isolated subgraphs, with each

subgraph corresponding to a different clone (where a clone is defined as a set of cells derived from a single progenitor). Finally,

to further rule out the possibility that any of the retained clones were caused by the same allele being generated independently

in multiple unrelated founder cells, we only considered clones having% 3 different alleles from either CA, TA, or RA for further

analysis. This cutoff is selected considering that a cell could have three different alleles if CA, TA, and RA alleles are all edited.

3) To quantify the circulation of hematopoietic cells (Figures 5 and S5), we applied the most stringent criteria, by i) using de novo

alleles not present in either the three replicate mice in our allele bank, or six other mice profiled in the course of our study; and ii)

the allele complexity was R4 (except in Figure 5E). Allele complexity was calculated as the sum of both the total number of

mutation events and the total number of inserted base pairs within an allele, such that an allele with only a deletion would

have an allele complexity of 1, and an allele with both a deletion and a 2-bp insertion would have an allele complexity of 4

(2 events + 2-bp insertion).
Clonal analysis
Unless otherwise stated, we excluded cloneswith only one cell (from single-cell lineage tracing) or one UMI (from bulk lineage tracing)

in downstream analysis in Figures 4, 5, 6, and 7, because such clones cannot be used to assess lineage relationships between cell

types or bones.

Clonal fate bias test

To evaluate the statistical significance of the fate bias of a clone (Figure 4C), we compared the observed fate partitioning of a clone

with that expected by chance, given the distribution of fates of all observed cells. Specifically, for a clone with in total M cells in the

differentiated cell states, among whichm of them belong to a fate cluster of interest, we performed a one-sided hypergeometric test

from the values ðM;m;N; nÞ to obtain the p-value of a clone, whereN is the total number of cells in the differentiated cell states across

all clones, and n is the corresponding cell number within the targeted fate cluster.

Clonal coupling analysis

We computed a normalized correlation coefficient, which quantifies how often two cell types jointly appear within the same clone.We

have applied this approach to both single-cell (Figure 4D), and bulk (Figures 5C and 5G–5I) lineage tracing data. When applied to bulk

lineage tracing data, each UMI was inferred to correspond to a distinct cell, and so the term ‘‘cell’’ is used in the following to refer

either to a UMI or a cell-level barcode depending on the experiment. We represent the cell-by-clone matrix as X, with the entry

Xij ˛ f0;1g, where a value of 1 indicates that cell i belongs to clone j. This matrix is used to aggregate all cells within each population

(e.g., cell type) and the same clone to obtain matrix A, where each Akj represents the number of cells from cell type k belonging to

clone j.Akj constructed frombulk or single-cell lineage tracing data from the same biological system can be related to each other after

adjusting for library depth differences. Since different cell typesmay be sampled at different depths, we first row-normalize thematrix

Akj by the total number of cells of each cell type k to account for sampling heterogeneity between cell types (so that each row adds to
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1). Besides, because each clone represents an independent measurement and therefore should contribute equally to the coupling

calculation, we then normalize the matrix per column to calculate within each clone the fraction of cells in each cell type (clone

normalization). This clone normalization was performed first among HSPCs and then among downstream fates, so that the proba-

bility mass of a clone is conserved over different differentiation stages. The above two normalization procedures yield the normalized

clonal matrix Akj. The transpose of the Akj matrix is shown as heatmaps in Figures 4B, S4B, and S5B. To calculate the clonal coupling

from this matrix, we follow the approach in CoSpar.49 Briefly, the clonal coupling is calculated as Ykk0 =
P
j

AkjAk0 j, and then subse-

quently normalized according to Ykk0 = Ykk0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YkkYk0k0

p
to obtain the reported clonal coupling scores between cell types k and k0

(Figure 4D).

To evaluate the statistical significance of an observed clonal coupling computed from above, we compared it with that from 10,000

randomized clonal matrices to obtain the one-sided p-value. The randomized clonal matrices were generated to preserve the same

cell number in each cluster, and the same clone size distribution among HSPCs as well as downstream fates. To achieve this, we first

filtered the cell-by-clonematrix X to include only cells having valid clonal IDs, then split thematrix into two sub-matrices: Xðt0Þ; which

contains only cell states from HSPCs, and Xðt1Þ, which contains all remaining cell states. We randomly shuffled Xðt0Þ and Xðt1Þ along
the row axis, and then concatenated these twomatrices to obtain the final randomized clonal matrix X. We updated theCoSpar pack-

age during this study to implement the above clonal analysis: the clonal coupling analysis can be achieved with the cospar.tl.fate_-

coupling function, with the p-value generated by cospar.tl.pvalue_for_fate_coupling.

Progenitor fate bias prediction

To infer the fate bias of HSPCs (Figure 4F), we manually defined HSPCs as the early population (t0) and the rest cells as the later pop-

ulation (t1) in order to apply CoSpar to infer the transition probability matrix from HSPCs to any cell from the non-HSPC population.

We used cospar.tmap.infer_Tmap_from_multitime_clones to infer the transition matrix. We then ran cospar.tl.fate_map with default

parameters to infer the progenitor probability of each HSPC tomajor cell types (MkP, Ery, Mon, or Neu) from the computed transition

matrix. The progenitor probability, normalized by the maximum value among progenitors, reports the probability of a given cell type

originating from a given HSPC.

Shared clone fraction

Wedefine 4ðx; yÞ as the fraction of clones that are detected in a given cell type x from one bone y and shared in the same cell type from

other bones. We applied it to the bulk lineage data from Figure 5B, where we know for each UMI the associated lineage barcode, the

cell type (through FACS), and bone location (because sequencing amplicons from each dissected region were prepared with a

different library index). A clone was therefore identified as a collection of UMIs sharing a single lineage barcode, which might include

UMIs that each correspond to different cell types and/or different bones. Denote nsharedðx; yÞ as the number of clones shared between

cells of cell type x frombone y and those from any other bones, and ntotalðx; yÞ as the total number of cloneswith cells of cell type x and

bone y. Then, shared clone fraction 4ðx;yÞ = nshared=ntotal.

Single-cell transcriptomic analysis
We generated count matrices from the 10X scRNA-seq data using Cell Ranger v.7.0.0. For transcriptomic data from Camellia-seq,

we adapted a bioinformatic pipeline developed earlier to analyze STRT-seq data.59 We used the mouse genome mm10 as the refer-

ence genome.

For quality control, we filtered the count matrices to remove cells either with <700 detected genes or with <1,500 total UMI counts.

We next removed genes detected in <2 of the remaining cells. Finally, we removed cells for which mitochondrial genes contributed

>10%of total UMIs. The countmatrices were then normalized such that the total UMI counts corresponding to each cell were 10,000.

For dimensionality reduction (Figures 3I, 7C, and S6H), we adapted the pipeline described in CoSpar.49 Briefly, we selected highly

variable genes, regressed out the effects of cell cycle (unless otherwise stated), and used the top 40 principal components to build a

k-nearest neighbor (k-NN) graph, with n_neighbors =20. Finally, we performed UMAP to generate the two-dimensional embedding.

Chromatin-accessibility and DNA-methylation analysis
Reads from scBS-seq libraries were aligned to the bisulfite-converted mm10mouse genome using Bismark v.0.23.0 in a paired-end,

non-directional mode. Then the unmapped reads were aligned again in a single-end, non-directional mode. We used the coverage2-

cytosine script from Bismark with the –nom-seq option to generate CpG report files for ACG and TCG trinucleotides and GpC report

for GCA, GCC, and GCT trinucleotides. In each cell, the DNAmethylation fraction (CpG fraction) at a given CpG site was determined

by the ratio of the number of methylated CpG reads to the number of unmethylated CpG reads. The accessibility fraction or GpC

fraction was computed similarly. For quality control, we discarded cells with either <200,000 unique CpG sites, or <2,000,000 unique

GpC sites.

We then projected the raw CpG or GpC fraction data onto a set of informative genomic regions for downstream analysis. For chro-

matin accessibility (GpC), we used the accessible regions (narrowpeak output from MACS2) from published bulk ATAC-seq data of

HSCs54 as the genomic feature sets, while for DNA methylation (CpG), we used the low-methylation regions identified in the pseu-

dobulk DNA methylation data of bone marrow HSCs (CpG fraction cutoff set at the lowest 15 percentile). We averaged the CpG (or

GpC) fraction over each of these pre-selected genomic regions, which we call features, to obtain the cell-by-feature rate matrix.
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To perform dimensionality reduction with either the DNA-methylation or chromatin-accessibility cell-by-feature matrices, we first

calculated the cell–cell similaritymatrixS, with each elementSij given by the Pearson correlation between cells i and j over all features.

We then selected the top 10 eigenvectors of S to generate a k-NN graph with n_neighbor = 10. Finally, we performed UMAP to

generate the two-dimensional embedding.

Clonal memory analysis
Intra-clone similarity score

To calculate intra-clone similarity scores with respect to each of the gene-expression, chromatin-accessibility, and DNA-methylation

data (Figures 7F, 7G, and 7H), we first computed a cell-cell similarity matrix S using all features within a given data type. The intra-

clone similarity score for each clone was then calculated as the average over all ðn2 � nÞ=2 pairwise similarity scores among the n

cells associated with each clone. We also generated randomized clones by shuffling the cell-by-clone matrix Xij along each column

(clone) to preserve the original clone size distribution and computed the intra-clone similarity for these randomized clones, repeating

this procedure 1000 times. Similarity scores from both observed and randomized clones were rescaled together within each data

modality from a given mouse sample to span the interval [0,1]. We computed a p-value using Wilcoxon rank-sum test by comparing

the observed intra-clone similarity scores of all clones from a data modality with those from corresponding randomized clones.

Significance of clonal memory per clone

To obtain the p-value of a clone regarding its clonal memory based on a certain data modality (Figure S6A), we retained the raw sim-

ilarity scores between any two pairs of cells within a clone, and compared them with those between cells that do not share a clonal

relationship. We then performed the Wilcoxon rank-sum test to derive a p-value, followed by Benjamini–Hochberg correction.

Memory scores

Memory scores O in Figure 7J were calculated as the difference between the average intra-clone similarity scores of the observed

(obs:) and randomized (rand:) clones, normalized by the standard deviation of the intra-clone similarity scores of the randomized

clones (std. rand.). That is O = ðobs: � rand:Þ=(std. rand).
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Supplemental figures

Figure S1. Characterizing the TetO-Cas9-TdTmESC line and the DARLIN-v0 mouse line, related to Figure 2

(A–D) Characterizing the TetO-Cas9-TdT mESC line.

(A) Genetic scheme of themESC line (left) and the experimental scheme to test the sensitivity of its target-array editing to Dox induction (right). Note that the target

array was integrated at the Tigre locus in this mESC. Cells were exposed to 0, low (0.04 mg/mL), medium (0.2 mg/mL), and high (1 mg/mL) Dox concentrations for 0,

12, 24, 48, 72, and 96 h, respectively.

(B and C) Relationship between Dox incubation time and the fraction of recovered target arrays (UMIs) that were edited (B) or the number of unedited target sites

per recovered target array (C) at each of the four Dox concentrations.

(D) Relative UMI fraction of editing patterns across the ten target sites, for each length of time of Dox incubation at 0.04 mg/mL.

(E–G) Comparison of the alleles generated in the DARLIN-v0 mouse line with those in the Cas9/CARLINmouse line, using the bulk RNA data from Figure 2B. Bulk

RNA data from granulocytes were used to generate all the following figures except (I).

(E) Venn diagrams of the allele overlap between mouse replicate from the Cas9/CARLIN (top) and DARLIN (bottom) mouse lines.

(F) The relationship between the number of observed alleles and the inferred number of edited cells (i.e., UMIs).

(G) Distribution of the number of insertion events per observed allele.

(H) Frequency of all four DNA nucleotides among all inserted sequences identified in the edited alleles observed with the DARLIN-v0 mouse line.

(I) Fraction of cells (UMIs) from granulocytes that were edited across DARLIN-v0 mouse replicates.

(legend continued on next page)
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(J) Maps of editing positions observed for either the Cas9/CARLIN (left) or DARLIN-v0 (right) mouse line. The upper panel shows the frequency of insertions (blue

bars) or deletions (red lines) at each position of the unedited target-array sequence. For the insertions, the position corresponds to position immediately 50 of the
inserted sequence. The bottom panel depicts individual observed alleles, also mapped to the unedited target array. Deletions are represented by red lines

spanning each deleted region. Insertions are represented by blue lines, each of which begins at the position immediately 50 of the corresponding inserted

sequence, with a length representing the corresponding number of nucleotides inserted.

(K) Histogram of allele UMI counts when aggregating alleles from all bulk RNA lineage-tracing libraries generated from DARLIN-v0 mice in Figure 2B. This

aggregated dataset corresponds to the rightmost point of Figure 2M.
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Figure S2. Additional characterization of the DARLIN mouse line, related to Figure 3

(A) Target-array order in the Col1a1 (left), Tigre (middle), and Rosa26 (right) loci, respectively.

(B–E) Comparison of alleles from the CA, TA, or RA loci (related to Figure 3B): the relationship between the number of observed alleles and the number of edited

cells (UMIs) (B), distribution of either the number of insertion events (C) or the total insertion length (D) per allele, and maps of individual alleles (E).

(F) Experimental scheme to determine the time needed for target-array editing in DARLIN. Mouse embryos at E10 were treated with Dox for 0, 12, 24, and 48 h,

respectively. All cells from these embryos were immediately profiled with bulk sequencing for editing in the CA, TA, and RA loci after treatment.

(G) Relationship between the fraction of cells (UMIs) that were edited (left) or the unedited targets per UMI (right) and the duration of Dox treatment.

(H) Average expression of the transcribed target array from either the CA, TA, or RA loci. The data are from the targeted amplification of each target array in the

experiment associated with Figures 3H–3N.

(I) Scatter plot showing homoplasy probability of two alleles jointly detectedwithin the same cell: CA and TA allele (left); CA andRA allele (right). For each of the two

alleles found in the same cell in the experiment associated with Figure 3I, we queried the allele bank to obtain the corresponding pre-inferred intrinsic homoplasy

probability P. See Figure S3 and STAR Methods for details about the allele bank and homoplasy probability.

(J) Editing efficiency of the target array from fetal liver cells in the Cas9/CARLIN or DARLINmouse line. Each point represents a mouse embryo replicate. Only CA

alleles were amplified from the DARLIN mouse line.
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Figure S3. Allele bank construction and allele probability inference, related to Figure 3
(A) Flowchart for a lineage tracing experiment with the DARLIN mouse line and its data analysis.

(B) Experimental scheme to generate a large allele dataset in DARLINmice that measured the allele generation probability. This dataset was used to construct the

allele bank.

(C) Venn diagram of the allele overlap between the three mouse replicates generated in (B), using alleles from the CA, TA, and RA loci.

(D) Maximum number of clones that the allele bank could reliably label at a false discovery rate (FDR) of 0.01, when using different combinations of the CA, TA, and

RA loci.

(E) Relationship between the observed homoplasy of an allele detected in a given tissue or cell type and the average predicted allele generation probability from

the allele bank (constructed using granulocytes). The observed homoplasy of an allele refers to the number of replicates (1, 2, or 3) for which that allele was

detected in a given tissue or cell type.De novo alleles (alleles not found in the allele bank) were excluded in this analysis. Data are from the experiment described in

Figure 2B.

(F–H) Estimation of the homoplasy probability of an allele from the observed overlap between three mouse replicates. See STARMethods section on homoplasy

probability inference for details.

(F) Relationship between the observed homoplasy probability of an allele and its corresponding UMI count.

(G) Relationship between the observed homoplasy probability P and the cumulative UMI fraction, i.e., the fraction of UMIs associated with edited alleles that have

an observed homoplasy probability <P.

(H) Relationship between the intrinsic homoplasy probability P and the cumulative UMI fraction.

(I) Relationship between the inferred generation probability of an allele and its intrinsic homoplasy probability.
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Figure S4. Additional quantification of single-cell lineage-tracing data from skull bone marrow, related to Figure 4

(A) Heatmap showing the expression of cell-type-specific marker genes (columns) in each annotated cell type (rows) using data from Figure 3I. Expression values

were column-wise normalized by the highest value in each column.

(B) Characterization of the clones detected in skull-derived bone-marrow data with respect to the number of clones satisfying increasingly stringent criteria (left)

and the cell-type composition of the 393 clones with more than one cell (right).

(C) Expression of MkP bias-associated genes in HSPCs, in addition to Figure 4I. These selected genes either play an important role in megakaryocytes (e.g., Vwf)

or are transcription factors with a putative role in MkP bias.

(D) Clonal fate-bias analysis (same as Figures 4B–4F) with cells from the skull-derived bonemarrow after sampling the lineage-tracing data to resemble that of the

Cas9/CARLIN mouse line. We used only rare alleles from the CA locus (comprising 27% of the total rare alleles) to generate clones and further down-sampled

these clones to 44%3 69% = 30%, where the 44% accounts for the reduced editing efficiency in the Cas9/CARLIN mouse (�35%) in comparison to that of the

DARLINmouse (�80%), giving the relative fraction 35%/80%= 44%,whereas the 69% is due to the reduced rare-allele fraction among edited alleles in the Cas9/

CARLINmouse (�55%) than in DARLIN (�80%when considering only alleles only fromCA locus), leading to the relative fraction 55% / 80%= 69%. The sampling

parameters were derived from Figure 3N. None of the clonal coupling scores (upper right) were statistically significant (threshold: p = 0.05).
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Figure S5. Additional analysis of inter-bone lineage relationships, related to Figure 5

(A) FACS sorting strategies for obtaining LT-HSC, MPP, MkP, and MyP.

(B) Clonal profiles of hematopoietic cells from DARLIN mice induced at E10.0 (left), at E17.0 (middle), and in adulthood (right). Otherwise, as in Figure 4B. Only

clones labeling the left leg bone (LL) were shown.

(C) Heatmap of the clonal coupling scores between different cell types and bones, using data from a negative control mouse, with which lineage barcodes were

induced in the adult stage and profiled 3 days later, sorting for bone-marrow-derived LT-HSC, MPP, MkP, andMyP cells from the LLs, right leg bones, and spine.

(legend continued on next page)
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(D) Percentage of de novo alleles in the lineage-tracing data corresponding to each of the collectedmouse samples. A de novo allele is an allele that was not found

in our large allele bank.

(E) The relationship between the observed shared clone fraction and the reads-per-UMI threshold for calling alleles, plotted for each of the four cell types

considered in Figure 5D.

(F) Shared clone fraction with respect to HSC, MPP, MkP, and MyP inferred using alleles profiled from each of the CA, TA, or RA loci within the same mouse,

across different induction stages. The TA data are reproduced from Figures 5J–5M to compare the technical consistency between different loci within the same

mouse. Data from the same mouse are plotted with the same color. Otherwise, same as Figure 5J.
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Figure S6. Characterizing Camellia-seq HSC datasets across stages, related to Figures 6 and 7

(A) Adjusted p values of intra-clone similarity with respect to DNAmethylation for all the 21 observed clones withR 2 cells. The red dashed line indicates p = 0.05.

Significant intra-clone similarity was observed for 19 out of all 21 clones.

(B) Differential DNA-methylation regions (DMRs) between clones with >1 cells in mouse LL731. Each column corresponds to an individual cell, and each row

corresponds to one of 279 genomic loci that were identified as significantly varying (p% 0.05, one-way ANOVA, with Benjamini-Hochberg correction). The DNA-

methylation score is obtained by smoothing the CpG fraction on the full PCA space as described in Kremer et al.70

(C) Box plot of expression associated with genes closest to the 276 clonal DMRs identified in (B) (blue) and all remaining genes (yellow). The difference is

insignificant between these two groups (p = 0.65, t test).

(D) Top 10 enriched GO terms associated with genes closest to 276 clonal DMRs. No statistically significant GO terms were found at an FDR cutoff of 0.01.

(legend continued on next page)
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(E) Experimental scheme by which the Camellia-seq experiments were performed with DARLIN mice at different stages post induction at E10.0. LL731 is

highlighted in Figures 6 and 7.

(F) UMAP embeddings of all post-filtering cells in the gene expression space, without cell-cycle correction. Cells are colored by their developmental stages.

(G and H) Examples of stage-specific chromatin accessibility, DNA methylation, and gene expression.

(G) Pseudobulk chromatin-accessibility and DNA-methylation data across HSC stages for selected genes: Runx1, Hlf, Gata2, Hmga2, and Hoxa3. The ATAC

peaks of HSCs from Li et al.54 are also shown. The arrows indicate genomic regions with differential regulation across developmental stages.

(H) Gene expression on the transcriptome UMAP embedding, related to (G).

(I) Fraction of cells with an edited target array (from CA, TA, or RA loci) for each of the collected mouse samples.

(J) Fraction of cells for which a rare allele was detected from at least one target array for each mouse sample, as measured by Camellia-seq. Otherwise, as in

Figure 3L.

(K) Statistical significance (i.e., p value) of transcriptomic and epigenomic memory for each of the collected mouse datasets. For a given mouse sample and data

modality, its corresponding p value was calculated as in Figures 7F–7H.
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Figure S7. Additional characterization of DARLIN, related to Figures 2 and 3

(A) The relative abundance of unique deletion-only alleles as a function of deletion length. The relative abundances were calculated by dividing the number of

unique alleles by total UMI count in each sample. Each dot represents a bulk allele library from 300,000 granulocytes extracted from amouse replicate, where the

Cas9/CARLIN and DARLIN-v0 datasets were generated from Figure 2B and DARLIN-CA, DARLIN-TA, and DARLIN-RA datasets from Figure 3B. To mitigate the

influence of insertions on the quantification, we considered alleles with only deletions. The yield of distinct alleles decreases for large-scale deletions (i.e.,

>180 bp), which remove the majority of the targeting array.

(B) Relationship between the mean total deletion length among all alleles in a bulk sample and the corresponding editing efficiency of this sample. Otherwise,

same as in (A). We observed shorter deletion lengths in DARLIN than Cas9/CARLIN at the same editing efficiency.

(C–E) Proposed model for the observed editing differences between Cas9 and Cas9-TdT.

(C) Illustration of three repair pathways (I, II, and III) following double-strand breaks (DSBs) generated by Cas9 or Cas9-TdT. ADSB can occur at a single target site

(single cut) or two sites (double cuts), with a length of n327 bp, where n is the number of deleted target sites in between. DSBs can be repaired through direct non-

homologous end joining (NHEJ, pathway I), with no further insertions or deletions. These dual-site DSBs may also undergo further 50 resection, before being

resolved using exposed microhomology (2–3 bp) between the exposed 30 sequences through microhomology-mediated end joining (MMEJ) (pathway II),71

resulting in additional deletions. Finally, DSBs may undergo 30 extension at either or both ends of the cleavage site. This could generate microhomology between

these 30-extended sequences and lead to DSB repair through MMEJ (pathway III), resulting in additional insertions.

(D) Outcomes when repairing a DSB associated with a single cut or double cuts using each of the three repair pathways. In the case of a single cut, pathway I

restores the original sequence and leads to unsuccessful editing, pathway II generates edited alleles with additional deletions, and pathway III generates edited

alleles with additional insertions. In the case of double cuts, pathway I leads to a periodic deletion length of n327 bp, pathway II gives the rightward skew of

deletion density observed at each periodic peak of deletion length, and pathway III generates alleles with periodic deletion length and additional insertions.

(E) Relative contribution of each repair pathway associated with either Cas9 (Cas9/CARLIN) or Cas9-TdT (DARLIN). Without TdT, pathway I is thought to be the

dominant repair pathway.72 We propose that TdT significantly increases the contribution from pathway III, which would lead to more insertions, fewer deletions

(due to less contribution from pathway II), and increased editing efficiency (due to less contribution from pathway I that restores single-cut events into unedited

alleles). The collective contribution from all three pathways in either DARLIN or Cas9/CARLIN is shown in Figure 2F, which is consistent with our model prediction.

(F) Gene expression of Cas9 or Cas9-TdT in all cells from Cas9/CARLIN and DARLIN embryos, respectively, quantified by qPCR following 24-h Dox treatment.

The p value from t test is shown.

(legend continued on next page)
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(G) Illustration of the impact of background editing in the scenario of low or high efficiency of Dox-induced editing. With high efficiency of Dox-induced editing,

alleles arising from background editing may be further edited in a stochastic manner, such that each of the cells (colored in gray) carrying this background allele

will carry a new and distinct allele following Dox induction, thereby mitigating the impact of background editing.

(H) Average number of unedited targets for alleles from background editing. Data were from granulocytes of two mouse replicates without Dox induction,

generated in Figure 2B. It supports the possibility of further editing these background-generated alleles upon Dox induction.
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