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1 Supplemental results for elastic network model of PDZ domain

Fig 1. Magnitude of single-site mutational effects ∆l for the PDZ domain conformational change
from Fig. 1 of the main text. (a) Magnitudes by rank. (b) Histogram of magnitudes. According to our
definition, the sites of large magnitude constitute “sector” sites with respect to selection on the energy cost of this
conformational change, while all others are “non-sector” sites.

Fig 2. Performance of ICOD for the selected sequence ensemble from Fig. 1 of the main text. (a)

Eigenvalues for ICOD method (upper) and Recovery of ~∆ for all eigenvectors (lower). (b) Leading eigenvector ν
(1)
l

(upper) and mutational effect ∆l at site l (lower, same as in Fig. 1(f) of the main text). The excellent performance
of ICOD on this unbiased ensemble of sequences supports the general applicability of the ICOD method to both
biased and unbiased sequence ensembles.

2 Recovery by a random vector

Here, we calculate the random expectation of the Recovery of the mutational-effect vector ~∆ by a generic other
vector ~ν, in order to establish a null model to which to compare. For a binary sequence, Recovery, as defined in
Eq. 8 of the main text, can be expressed as

Recovery = ~∆′ · ~ν′ =

L∑
l=1

∆′l ν
′
l , (1)

with ∆′l = |∆l|/
√∑

l ∆
2
l and ν′l = |νl|/

√∑
l ν

2
l . As before, L denotes the length of the sequence and hence the

number of components of ~∆ and ~ν. As ~ν′ is a normalized L-dimensional vector, its components can be expressed in
L-dimensional spherical coordinates using L− 1 angles θi:

ν′l =

(
l−1∏
i=1

sin θi

)
cos θl ∀l ∈ {1, . . . , L− 1} , (2)

ν′L =

L−1∏
i=1

sin θi , (3)

where θi ∈ [0, π/2] for all i ∈ {1, · · · , L}, because all components of ~ν′ are nonnegative. Note that we employ the
usual convention that empty products are equal to one: Eq. 2 yields ν′1 = cos θ1.
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The average Recovery for a random vector ~ν′ with an orientation uniformly distributed in the L-dimensional
sphere reads:

〈Recovery〉 =

∫
Ω
dΩ

∑
l ∆
′
lν
′
l∫

Ω
dΩ

=

∑
l ∆
′
l Il∫

Ω
dΩ

, (4)

where the angular element is dΩ =
∏L−1
i=1 dθi sinL−i−1(θi), the integration domain is Ω = [0, π/2]

L−1
, and we have

introduced Il =
∫

Ω
dΩ ν′l . Using Eq. 2, we obtain for 1 ≤ l ≤ L− 1

Il =

∫
Ω

dΩ ν′l =

(
l−1∏
i=1

∫ π/2

0

dθi sinL−i(θi)

)(∫ π/2

0

dθl sinL−l−1(θl) cos(θl)

)(
L−1∏
i=l+1

∫ π/2

0

dθi sinL−i−1(θi)

)
, (5)

and similarly, Eq. 3 yields

IL =

∫
Ω

dΩ ν′L =

L−1∏
i=1

∫ π/2

0

dθi sinL−i(θi) . (6)

Using the following results valid for n > −1:∫ π/2

0

dθ sinn(θ) =

√
π

2

Γ
(

1+n
2

)
Γ
(
n+2

2

) ;

∫ π/2

0

dθ sinn(θ) cos(θ) =
1

n+ 1
, (7)

where Γ denotes the Euler Gamma function, which satisfies Γ(x+ 1) = xΓ(x) for all x, we obtain for 1 ≤ l ≤ L:

Il =
π(L−1)/2

2L−1 Γ
(
L+1

2

) , (8)

which is independent of l. Besides, ∫
Ω

dΩ =
πL/2

2L−1 Γ(L/2)
. (9)

Combining Eq. 4 with Eqs. 8 and 9 finally yields

〈Recovery〉 =

∑
l ∆
′
l Il∫

Ω
dΩ

=
Γ (L/2)

√
π Γ

(
L+1

2

) ∑
l

∆′l =
Γ (L/2)

√
π Γ

(
L+1

2

) ∑l |∆l|√∑
l ∆

2
l

. (10)

In particular, in the relevant regime L� 1, an asymptotic expansion of Γ yields:

〈Recovery〉 ≈
√

2

πL

∑
l |∆l|√∑
l ∆

2
l

. (11)

The maximum expectation of Recovery is obtained when all components of ~∆, i.e. all mutational effects, are identical:

〈Recovery〉max =

√
2

π
≈ 0.798. (12)

Conversely, the average Recovery becomes minimal when only one component of ~∆ is nonzero, which constitutes the
limit of the case where the mutational effect at one site is dominant:

〈Recovery〉min =

√
2

πL
, (13)

which approaches zero in the limit L→∞.

3 Inverse covariance matrix of our sequence ensembles

Here, we present a derivation of the small-coupling approximation of the inverse covariance matrix for our artificially-
generated sequence ensembles. In this small-coupling limit, the inverse covariance matrix provides an estimate of
the energetic couplings used to generate the data. More generally, deducing energetic parameters from observed
statistics is a well-known inference problem, also known as an inverse problem. Two-body energetic couplings can be
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inferred from the one and two-body frequencies observed in the data, using a standard maximum entropy approach.
However, the exact calculation of the energetic terms is difficult, and various approximations have been developed.
Following Refs [1,2], we use the mean-field or small-coupling approximation, which was introduced in Ref. [3] for the
Ising spin-glass model. For the sake of completeness, we now review the main steps of the calculation, which follow
Ref. [2]. Note that we do not use inference methods specific to low-rank coupling matrices [4, 5] because we wish to
retain generality, with the application to real sequence data in mind.

We begin with the case of binary sequences, which is discussed in the main text. Following that, we generalize to
cases where more than two states are allowed at each site, such as the 21 possible states for real protein sequence
(20 amino acids plus gap).

3.1 Binary sequences

We begin by deriving Eq. 9 from the main text, which provides an approximation for the inverse covariance matrix
of the ensembles of our binary artificial sequences. Each sequence ~S is such that Sl ∈ {0, 1} for each site l with
1 ≤ l ≤ L, where L is the length of the sequence.

3.1.1 From a sector model for binary sequences to an Ising model

Recall the fitness w of a binary sequence ~S under selection for trait T to be close to T ∗ (Eq. 6 in the main text):

w(~S) = −κ
2

(
T (~S)− T ∗

)2

= −κ
2

(∑
l

∆lSl − T ∗
)2

. (14)

We introduce sl = 2Sl − 1: it is an “Ising spin” variable (Sl = 0⇔ sl = −1 and Sl = 1⇔ sl = 1). The fitness in
Eq. 14 can be rewritten as

w(~s) = −κ
2

(∑
l

Dlsl − α

)2

, (15)

with Dl = ∆l/2 and α = T ∗ −
∑
lDl. Expanding yields

w(~s) = −κ
2

∑
l 6=p

DlDpslsp +
∑
l

D2
l − 2α

∑
l

Dlsl + α2

 , (16)

where we have used the fact that s2
l = 1. The second term and the last term in Eq. 16 are both constants, and

therefore our fitness is equivalent to

w(~s) = −κ
2

∑
l 6=p

DlDpslsp − 2α
∑
l

Dlsl

 . (17)

This fitness has the form of a standard Ising Hamiltonian with inter-spin couplings and local fields, albeit with the
convention difference in overall sign between fitness and energy.

3.1.2 First-order small-coupling expansion

We next consider the general Ising Hamiltonian with inter-spin couplings and local fields

H(~s) = −1

2
ε
∑
i6=j

Jijsisj −
∑
i

hisi , (18)

where ε is a constant to be employed in a small-coupling expansion. With this Hamiltonian, taking thermal energy
kBT = 1, the equilibrium probability of finding a particular sequence ~s is

P (~s) =
1

Z
e−H(~s), (19)

where Z =
∑
~s e
−H(~s).
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Introducing F = − logZ, we have

∂F

∂hi
= −〈si〉 = −mi ,

∂2F

∂hi∂hj
= −∂mi

∂hj
= 〈si〉〈sj〉 − 〈sisj〉 = −C ′ij , (20)

where, following the Ising terminology, mi denotes the average magnetization at site i, while C ′ denotes the covariance
matrix in the Ising convention. Note that, using the identity mi = 2Pi − 1, where Pi denotes the probability that
si = 1, we obtain

C ′ij = 〈sisj〉 − 〈si〉〈sj〉 = 4 (Pij − PiPj) = 4Cij , (21)

where Pij is the probability that si = sj = 1, and C denotes the covariance matrix in the Potts convention, which is
used in the main text because it allows straightforward generalization to the case where more than two states are
possible at each site.

Performing a Legendre transform, we introduce G = F +
∑
imihi, yielding

∂G

∂mi
= hi , (22)

∂2G

∂mi∂mj
=

∂hi
∂mj

= C ′ij
−1
. (23)

We now perform a small-coupling expansion and express G to first order in ε (see Eq. 18): G(ε) ≈ G(0) + εG′(0).
Since sites are independent for ε = 0, it is straightforward to express G(0) and G′(0) as a function of the one-body
expectations, represented by mi, and of the couplings. We obtain

G(0) =
∑
i

mi + 1

2
log

(
mi + 1

2

)
+

1−mi

2
log

(
1−mi

2

)
, (24)

and

G′(0) =
∂G

∂ε
(0) = −1

2

∑
i 6=j

Jijmimj . (25)

Using these expressions, and taking ε = 1 in the expansion, we obtain the following approximation for G:

G ≈
∑
i

mi + 1

2
log

(
mi + 1

2

)
+

1−mi

2
log

(
1−mi

2

)
− 1

2

∑
i6=j

Jijmimj . (26)

Using Eqs. 22 and 23, we obtain the elements of the inverse covariance matrix from Eq. 26:

C ′kl
−1

= −Jkl , ∀l 6= k ,

C ′ll
−1

=
1

2

(
1

1 +ml
+

1

1−ml

)
=

1

4

(
1

Pl
+

1

1− Pl

)
, (27)

where Pl denotes the probability that sl = 1.
Note that Eq. 26 is a first-order small-coupling (or mean-field) approximation. The expansion can be extended

to higher order, and the second-order expansion is known as the Thouless, Anderson, and Palmer (TAP) free
energy [3, 6].

3.1.3 Application to our sector model

Comparing Eqs. 17 and 18 (with ε = 1) allows us to identify the couplings in our sector model as

Jkl = −κDkDl = −κ∆k∆l/4 , ∀k 6= l . (28)

Note that this expression is in the Ising gauge (also known as the zero-sum gauge). Recall also that the link to the

Potts convention is made through C ′ = 4C (Eq. 21), which implies C ′
−1

= C−1/4. Finally, recall that fitness and
energy have opposite signs.

Hence, in the Potts convention, Eq. 27 yields for our sector model:

C−1
kl = κ∆k∆l , ∀l 6= k ,

C−1
ll =

1

Pl
+

1

1− Pl
. (29)

This corresponds to Eq. 9 in the main text.
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3.2 Sequences with q possible states at each site

3.2.1 From a sector model to a Potts model for sequences

Motivated by the fact that a real protein sequence has 21 possible states at each site (20 different amino acids plus
gap), we now generalize the above result to the case where q states are possible at each site. We denote these states

by α with α ∈ {1, .., q}. Our sector model can then be mapped to a q-state Potts model. The length-L vector ~∆ of
single-site mutational effects introduced in the two-state case in the main text is replaced by a (q − 1)× L matrix
of mutational effects, each being denoted by ∆l(αl). These mutational effects can be measured with respect to
a reference sequence ~α0 satisfying ∆l(α

0
l ) = 0, ∀l ∈ {1, . . . , L}: at each site l, the state present in the reference

sequence ~α0 serves as the reference with respect to which the mutational effects at that site are measured. For the
sake of simplicity, we will take state q as reference state at all sites. This does not lead to any loss of generality,
since it is possible to reorder the states for each l.

The generalization of the fitness function Eq. 6 of the main text (Eq. 14) to our q-state model can be written as

w(~α) = −κ
2

(T (~α)− T ∗)2
= −κ

2

(
L∑
l=1

∆l(αl)− T ∗
)2

, (30)

(see Eq. 3 in the main text). Expanding this expression, discarding a constant term, and using the fact that there
can only be one state at each site, we find that the fitness of sequences can be expressed as

w(~α) = −κ
2

∑
l 6=k

∆l(αl)∆k(αk)− κ

2

L∑
l=1

∆l(αl) (∆l(αl)− 2T ∗) . (31)

This is a particular case of the more general Potts Hamiltonian

H(~α) = −1

2

∑
l 6=k

elk(αl, αk)−
L∑
l=1

hl(αl) , (32)

which is the one usually considered in Direct Coupling Analysis (DCA) [1, 2].
In order to identify Eq. 31 and Eq. 32, one must deal with the degeneracies present in Eq. 32, where the number

of independent parameters is L(q − 1) + L(L− 1)(q − 1)2/2 [7]. To lift this degeneracy, we choose the gauge usually
taken in mean-field DCA [2]: elk(αl, q) = elk(q, αk) = hl(q) = 0 for all l, k, αl, αk. This choice is consistent with
taking state q as the reference state for mutational effects (see above), and we will refer to it as the reference-sequence
gauge. This gauge choice enables us to identify the couplings between Eq. 31 and Eq. 32:

elk(αl, αk) = −κ∆l(αl)∆k(αk) , (33)

for all l 6= k, and all αl, αk, with ∆l(q) = 0 for all l (recalling that fitness and energy have opposite signs).

3.2.2 First-order small-coupling expansion

The derivation of the first-order mean-field or small-coupling approximation for q-state models is very similar to the
Ising case presented above. Hence, we will simply review the main results (see Ref. [2]).

We start with the Hamiltonian

H(~α) = − ε
2

∑
l 6=k

elk(αl, αk)−
L∑
l=1

hl(αl) , (34)

where ε has been introduced to perform the small-coupling expansion. Eq. 34 coincides with Eq. 32 for ε = 1.
Considering F = − log(Z) with Z =

∑
~α e
−H(~α), where H (~α) is the Potts Hamiltonian in Eq. 34, we have for all k

and all αk < q:
∂F

∂hk(αk)
= −Pk(αk) , (35)

where Pk(αk) is the one-body probability. Similarly, we have for all k, l and all αk < q and αl < q:

∂2F

∂hl(αl)∂hk(αk)
= −∂Pk(αk)

∂hl(αl)
= −Ckl(αk, αl) , (36)
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where we have introduced the covariance Ckl(αk, αl) = Pkl(αk, αl)− Pk(αk)Pl(αl).
We perform a Legendre transform and introduce G = F −

∑
i

∑
αi
hi(αi)Pi(αi), yielding

∂G

∂Pk(αk)
= hk(αk) , (37)

∂2G

∂Pl(αl)∂Pk(αk)
=

∂hl(αl)

∂Pk(αk)
= C−1

kl (αk, αl) , (38)

for all k, l and all αk < q and αl < q. Note that, in the latter equation, C−1
kl (α, β) is shorthand for A−1

ij , where A is the
(q−1)L× (q−1)L covariance matrix where terms involving the reference state q have been excluded: Aij = Ckl(α, β),
where i = (q − 1)(k − 1) + α and j = (q − 1)(l − 1) + β, with α ∈ {1, . . . , q − 1} and β ∈ {1, . . . , q − 1} [8].

We next perform a first-order expansion of G in ε, and take ε = 1, yielding:

G ≈
∑
l

∑
αl

Pl(αl) log (Pl(αl))−
1

2

∑
l 6=k

∑
αl,αk

elk(αl, αk)Pl(αl)Pk(αk) . (39)

Applying Eqs. 37, 38 to Eq. 39, and using Pl(q) = 1−
∑
αl<q

Pl(αl) gives

C−1
kl (αk, αl) = −ekl(αk, αl), ∀ l 6= k ,

C−1
ll (αk, αl) =

1

Pk(q)
+

δαkαl

Pk(αk)
. (40)

This result is the standard one found in DCA [2].

3.2.3 Application to our sector model

Combining Eqs. 33 and 40, we obtain for our sector model:

C−1
kl (αk, αl) = κ∆k(αk)∆l(αl), ∀ l 6= k ,

C−1
ll (αk, αl) =

1

Pk(q)
+

δαkαl

Pk(αk)
. (41)

For q = 2, Eq. 41 reduces to Eq. 27 (Eq. 9 in the main text), using 1− Pl = Pl(q).

3.2.4 Selection on multiple traits

So far, we have mainly discussed the case where there selection on only one trait (yielding one sector). However, real
proteins face various selection pressures. The generalization of the fitness in Eq. 30 to N simultaneous selection on
different traits reads

w(~S) = −
N∑
i=1

κi
2

(Ti − T ∗i )
2

= −
N∑
i=1

κi
2

(
L∑
l=1

∆i,l(αl)− T ∗i

)2

, (42)

which corresponds to Eq. 11 in the main text. We choose the reference-state gauge, assuming again for simplicity
that the reference state is q at each site. The identification to the general Potts Hamiltonian Eq. 32 (recalling that
fitnesses and energies have opposite signs) then yields

elk(αl, αk) = −
N∑
i=1

κi∆i,l(αl)∆i,k(αk) , (43)

which generalizes Eq. 33 to the multiple selection case. Using the small-coupling expansion result in Eq. 40, we
obtain the following approximation for the inverse covariance matrix:

C−1
kl (αk, αl) =

N∑
i=1

κi∆i,k(αk)∆i,l(αl), ∀ l 6= k ,

C−1
ll (αk, αl) =

1

Pk(q)
+

δαkαl

Pk(αk)
. (44)

This generalizes Eq. 41 to the case of simultaneous selection on multiple traits.
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4 Robustness of functional sectors and of ICOD

In the main text, we introduced the Inverse Covariance Off-Diagonal (ICOD) method to identify protein sectors
from sequence data. The ICOD method exploits the approximate expression derived above for the inverse covariance
matrix (Eq. 41); in particular, ICOD makes use of the fact that the off-diagonal elements of C−1 are simply related

to the elements of the mutational effect vector ~∆. In this section, we first describe our comparison of ICOD to
SCA for single selection, and detail our test of ICOD for double selection, using synthetic binary sequences. Next,
we confirm the robustness of the ICOD method to different forms of selection and then show how ICOD can be
extended to sequences with more than two states per site, and finally demonstrate its robustness to gauge choice
and pseudocounts.

4.1 Robustness of ICOD to selection bias, selection strength, and multiple selections

To quantify the performance of ICOD and to compare to SCA over a range of selection biases we focused on binary
sequences. To obtain the average curve for single selections in Fig. 3(a) of the main text, we first generated 100

distinct synthetic ~∆s, one for each sector size from n = 1 to 100, where sector sites are defined as those with large
mutational effects. To this end, the mutational effects of the sector sites and the non-sector sites were sampled,
respectively, from zero-mean Gaussian distributions with standard deviations 20 and 1. For each sector size and each
selection bias we generated a sequence ensemble of 50,000 random sequences and weighted each sequence according
to the distribution

P (~S) =
exp(w(~S))∑
~S exp(w(~S))

, (45)

where w(~S) is the fitness of sequence ~S, given by the single selection formula Eq. 6 in the main text. In general, we
wish to employ a selection window whose width in energy (or any other selected variable) scales with the overall
width of the unselected distribution. Hence, as mentioned in the main text, we perform all selections with a strength

κ =
10∑
l ∆

2
l

. (46)

Then, for each method (ICOD or SCA), performance as measured by Recovery of ~∆ by the first eigenvector was
averaged over the 100 different sector sizes.

As an aside, Fig. 3 demonstrates that the performance of ICOD and SCA is robust to varying selection strength
κ, as long as κ

∑
l ∆

2
l � 1. (A small value of κ

∑
l ∆

2
l implies weak selection, where most random sequences pass

selection and the resulting ensemble does not significantly reflect the constraint.)

Fig 3. Impact of selection strength κ on the performance of ICOD and SCA on synthetic data.
Results obtained on binary synthetic sequences with L = 100, selected using a synthetic ~∆ where the first 20 and
the other 80 mutational effects are, respectively, sampled from Gaussian distributions with variances of 20 and 1.
Selection is performed on ensembles of 50,000 random sequences, and each data point is obtained by averaging over
100 realizations. The relative bias is γ = 0.5.

Similarly, to obtain the average curve for double selection in Fig. 3(b) of the main text, we generated 100 distinct

pairs of ~∆1s and ~∆2s, one pair for each sector size from n = 1 to 100. Specifically, the sector for ~∆1 consisted of the
first n sites, while the sector for ~∆2 corresponded to the last n sites, so that the two sectors overlap for n > 50. As
for the single selections, the mutational effects of the sector sites and the non-sector sites were sampled, respectively,
from Gaussian distributions with standard deviations 20 and 1. As an example, two synthetic ~∆s for n = 20 are
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shown in Fig. 4. Again, for each sector size and each selection bias, we generated an ensemble of 50,000 random
sequences and weighted them according to Eq. 45 along with the double selection formula Eq. 42 (i.e. Eq. 11 in

the main text). The performance of ICOD as measured by Recovery of ~∆1 and ~∆2 by the first two eigenvectors
was averaged over the 100 different sector sizes. In Fig. 3(b) of the main text we also reported the performance of
ICOD for two non-overlapping sectors, each with 20 sites, and for two fully overlapping sectors, each with 100 sites.
We followed a protocol similar to that described above, but in each of these cases, we averaged Recovery over 100
realizations using distinct pairs of ~∆1 and ~∆2.

Fig 4. Example of two synthetic ~∆s generated for the double selection in Fig. 3(b) of the main text.

(a) Generation of ~∆1, where the mutational effects for the first 20 sites and for the last 80 sites are sampled,

respectively, from zero-mean Gaussian distributions with a standard deviation of 20 and 1. (b) Generation of ~∆2,
where the mutational effects for the last 20 sites and for the first 80 sites are sampled, respectively, from zero-mean
Gaussian distributions with a standard deviation of 20 and 1.

Unless otherwise stated, data for other plots were generated in the same way, i.e. using 50,000 random sequences,
sequence length L = 100, selection strength κ in Eq. 46, and standard deviation 20/1 of ∆l in the sector/non-sector
sites.

Note that to improve Recovery in the case of double selection, we applied Independent Component Analysis
(ICA) [9–11] to the first two eigenvectors in order to disentangle the contributions coming from the two constraints.
In general, we expect that the first N eigenvectors of the ICOD matrix C̃−1 will report N constraints. However,
each of these N eigenvectors is likely to include a mixture of contributions from different constraints. Applying ICA
to the first N eigenvectors to recover the individual constraints amounts to assuming that all the constraints are
statistically independent. As an example, in Fig. 5, we consider the case of two selections targeting a different set of
sites and with different selection windows (one biased, one non-biased). In this case, ICOD plus ICA yields excellent
Recovery (Fig. 5). Without ICA, the results are noticeably worse (Fig. 6). Moreover, Fig. 3(b) of the main text
demonstrates that ICOD plus ICA can achieve a high Recovery for a broad range of overlaps between two sectors.

Fig 5. ICOD method for simultaneous selection on two traits. (a) Upper panels: Components at each site

l of two synthetically generated mutational-effect vectors, with insets showing biased selection around T ∗1 for ~∆1 and

neutral selection around T ∗2 for ~∆2. Lower panel: average mutant fraction 〈Sl〉∗ at site l after selection on both

traits. (b) Performance of ICOD method. Recovery of ~∆1 and ~∆2 for all eigenvectors (upper) and corresponding
eigenvalues (lower). The gray dashed line indicates the random expectation of Recovery (Eq. 11).

In Fig. 3(b) of the main text, one observes a slight decrease of performance of ICOD plus ICA for double selection
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Fig 6. Performance of ICOD for the two-sector case in Fig. 5, without applying ICA.

with overlapping sectors. Does this arise from increasing sector size or from increasing overlap? As expected from
Eqs. 8 and 9 of the main text, Fig. 7(a) shows that Recovery does not fall off with increased sector size. Thus, we
tested whether larger sector overlaps could reduce Recovery. Fig. 7(b) shows that this is indeed the case for sequence
ensembles subject to two selections each with a fixed sector size of 20, but with different numbers of overlapping
sites. However, the reduction of Recovery is quite modest, as even for 100% overlap, Recovery remains above 0.9. It
is interesting to note that, independent of sector size and overlap, Recovery decreases faster for double selection
than for single selection at large relative biases (see Fig. 3 in the main text and Fig. 7).

Fig 7. Performance of ICOD for different sector sizes and sector overlaps. (a) Selection on a single trait
with varying sector size. Recovery is shown as a function of relative selection bias γ ≡ (T ∗ − 〈T 〉)/

√
〈(T − 〈T 〉)2〉

for sectors of size 1, 10, 20, 40, 60, 80, and 100 out of 100 sequence sites (cf. Fig. 3(a) of the main text). Recovery is
almost perfect for sectors of size larger than 10, but is substantially lower for sector size 1, which violates the criteria
∆l �

√∑
l′ ∆2

l′ . (b) Simultaneous selection on two traits with different degrees of sector overlap. For each selection,
the sector size is 20 out of 100 sequence sites, and the overlap varies from 0 to 20 sites. The average Recovery for
~∆1 and ~∆2 is shown as a function of relative selection bias. The data in (b) is averaged over 20 realizations of ~∆s.

4.2 Robustness of functional sectors to different forms of selection

To assess the robustness of physical sectors to forms of selection other than the simple Gaussian selection window of
Eqs. 2-3 of the main text, we generated ensembles of 50,000 random binary sequences as above, and used synthetically
generated mutational effects, with 20 sector sites out of L = 100 total sites. As before, the mutational effects of
the sector sites and the non-sector sites were sampled, respectively, from zero-mean Gaussian distributions with
standard deviations 20 and 1.

We first addressed selection for sequences with an additive trait T above a threshold Tt. We thus considered the
selected ensembles of sequences such that the value of the trait T (~S) = ~S · ~∆ is larger than a threshold Tt, and we
varied this threshold. Fig. 4 in the main text demonstrates that the corresponding sectors are identified by ICOD
just as well as those resulting from our initial Gaussian selection window.

We also successfully applied ICOD to various other forms of selection. In Fig. 8, we used the quartic fitness
function:

w(~S) = −κ1

4

(
L∑
l=1

∆lSl − T ∗
)4

, (47)

with κ1 = (10/
∑
l ∆2

l )
2, instead of our initial quadratic fitness function (see Eq. 14, and Eq. 3 in the main text) and

we weighted sequences using the Boltzmann distribution in Eq. 2 of the main text. Finally, in Fig. 9, we considered
the selected ensembles of sequences such that the value of the trait T (~S) = ~S · ~∆ is between T ∗ − η/2 and T ∗ + η/2,
where η is the width of the selection window. In Fig. 9, we used η = 0.6

√∑
l ∆

2
l .

These results confirm the robustness of our approach to different plausible forms of selection.
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Fig 8. Identification of sectors that result from quartic selection. (a) Histogram of the additive trait

T (~S) = ~S · ~∆ for randomly sampled sequences where 0 and 1 are equally likely at each site. Sequence length is
L = 100, mutational effects are synthetically generated with 20 sector sites. Sequences are selectively weighted using
a quartic window (orange) around T ∗. Selection is shown for T ∗ = 〈T 〉, or equivalently γ = 0, in terms of the
relative selection bias γ ≡ (T ∗ − 〈T 〉)/

√
〈(T − 〈T 〉)2〉. (b) Eigenvalues of the ICOD-modified inverse covariance

matrix C̃−1 (Eq. 10 of the main text) of the selected sequences for γ = 0. (c) Recovery of ~∆ for all eigenvectors of

C̃−1 for γ = 0. Gray dashed line: random expectation of Recovery. (d) Recovery of ~∆ for ICOD and for SCA as

functions of the relative selection bias γ. The data in (d) is averaged over 100 realizations of ~∆.

Fig 9. Identification of sectors that result from rectangular-window selection. (a) Histogram of the

additive trait T (~S) = ~S · ~∆ for randomly sampled sequences where 0 and 1 are equally likely at each site. Sequence
length is L = 100, mutational effects are synthetically generated with 20 sector sites. Sequences are selected if they
have a trait value T ∗ − η/2 < T (~S) < T ∗ + η/2 (orange shaded region). Selection is shown for T ∗ = 〈T 〉, or
equivalently γ = 0, in terms of the relative selection bias γ ≡ (T ∗ − 〈T 〉)/

√
〈(T − 〈T 〉)2〉. (b) Eigenvalues of the

ICOD-modified inverse covariance matrix C̃−1 (Eq. 10 of the main text) of the selected sequences for γ = 0. (c)

Recovery of ~∆ for all eigenvectors of C̃−1 for γ = 0. Gray dashed line: random expectation of Recovery. (d)

Recovery of ~∆ for ICOD and for SCA as functions of the relative selection threshold γ. The data in (d) is averaged

over 100 realizations of ~∆.
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4.3 Multiple states per site and alternative gauge choice

In Section 3.2 above, we described how to generalize from binary sequences to sequences with q possible states at
each site. Correspondingly, we now generalize the ICOD method to higher values of q. Since we are interested in
extracting the single-site mutational effects ∆l(αl) with respect to a reference state at each site, we can simply set
to zero the diagonal blocks of C−1 in Eq. 44, yielding the modified inverse covariance matrix

C̃−1
kl (αk, αl) = (1− δkl)

N∑
i=1

κi∆i,k(αk)∆i,l(αl) , (48)

for the case of multiple selections, or more simply for a single selection

C̃−1
kl (αk, αl) = (1− δlk)κ∆k(αk)∆l(αl). (49)

This equation generalizes Eq. 10 of the main text, which was obtained for q = 2. As in that case, the first eigenvector
of C̃−1 (associated with the largest eigenvalue) should accurately report the single-site mutational effects ∆k(αk).
Indeed, Fig. 10 in the main text shows that this generalized version of ICOD performs very well on synthetic data
generated for the case q = 21 relevant to real protein sequences. Note that in the reference-sequence gauge, Recovery
generalizes naturally to the q-state model as

Recovery =

∑
l,αl
|νl(αl)∆l(αl)|√∑

l,αl
νl(αl)2

√∑
l,αl

∆l(αl)2
, (50)

where the sums over states αl do not include the reference state at each site.

Fig 10. Performance of ICOD on synthetic sequence data with q = 21 possible states at each site.
(a) Mutational effects ∆l(k) with respect to a reference sequence, chosen to be state 21 at every site. The
mutational effect at q = 21 is not shown. Note that while mutational effects are initially generated from a Gaussian
distribution, relative mutational effects (calculated with respect to the reference sequence) can have a systematic
bias at each site l. (b) Eigenvalues of the ICOD-modified inverse covariance matrix C̃−1 defined in Eq. 49. (c)

Recovery of ~∆ (see Eq. 50). The green dashed line indicates the random expectation of Recovery (Eq. 11).

While the reference-sequence gauge is convenient and allows a clear interpretation of the mutational effects, other
gauge choices are possible. For instance, in the DCA literature, the zero-sum (or Ising) gauge is often employed [8,12].
In this gauge, the couplings satisfy ∑

α

eij(α, β) =
∑
β

eij(α, β) = 0 , (51)

Qualitatively, the gauge degree of freedom means that contributions to the Hamiltonian in Eq. 32 can be shifted
between the fields and the couplings [13]. In DCA, the focus is on identifying the dominant two-body interactions,
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so one does not want the couplings to include contributions that can be accounted for by the one-body fields [7].
The zero-sum gauge satisfies this condition because it minimizes the Frobenius norms of the couplings

‖eij‖ =

√√√√ q∑
α,β=1

[eij(α, β)]
2
. (52)

Hence, the zero-sum gauge attributes the smallest possible fraction of the energy in Eq. 32 to the couplings, and the
largest possible fraction to the fields [8, 13]. In order to transform to the zero-sum gauge defined in Eq. 51, each
coupling eij(α, β) is replaced by

ẽij(α, β) = eij(α, β)− 〈eij(ζ, β)〉ζ − 〈eij(α, η)〉η + 〈eij(ζ, η)〉ζ,η , (53)

where 〈.〉ζ denotes an average over ζ ∈ {1, ..., q} [8].
Shifting from the reference-sequence gauge where one state (in our derivations, state q) is taken as a reference at

each site to the zero-sum gauge requires the replacement

∆̃l(α) = ∆l(α)− 1

q

q∑
β=1

∆l(β), (54)

The new reference-state-free mutational effects satisfy
∑q
β=1 ∆̃l(β) = 0, and the associated couplings ẽlk(αl, αk) =

−κ∆̃l(αl)∆̃k(αk) (see Eq. 33) are related to the initial ones elk(αl, αk) through Eq. 53.
Importantly, these reference-state-free mutational effects can be used to assess the overall importance of mutations

at each particular site in the sequence. To this end, let us introduce the Frobenius norm of the reference-state-free
mutational effects:

||∆l|| =

√√√√ q∑
β=1

(
∆̃l(β)

)2

. (55)

This quantity, which we refer to as the “site significance”, measures the overall importance of mutational effects at
site l. In order to assess site significances from an ensemble of sequences, without investigating the impact of each
particular mutation at each site, one can apply the zero-sum gauge to the ICOD-modified inverse covariance matrix
(see Eq. 49), and compute the Frobenius norm of each 20× 20 block associated to each pair of sites (i, j) according
to Eq. 52. The first eigenvector of this compressed L× L matrix accurately reports the mutational significance of
each site, as illustrated in Fig. 11. Specifically, it yields a high Recovery of site significances as defined in Eq. 55 (see
Fig. 11(c)), and it successfully predicts the most important sites, i.e. the sector sites, in our synthetic data (see
Fig. 11(d)).

April 15, 2019 13/25



Fig 11. Assessing site significance for synthetic sequence data. The same synthetic data as in Fig. 10
(with q = 21 possible states at each site) is used. (a) Significance ||∆l|| of each site l, computed directly by applying
Eqs. 54 and 55 to the mutational effects ∆l(k) shown in Fig. 10(a). (b) Eigenvalues of the compressed (L× L)
ICOD-modified inverse covariance matrix, calculated by applying the zero-sum gauge to the ICOD-modified inverse
covariance matrix (see Eq. 49), and by computing the Frobenius norm of each 20× 20 block associated to each pair

of sites (i, j) according to Eq. 52. (c) Recovery of site significances ||~∆|| from each eigenvector of the compressed
ICOD-modified inverse covariance matrix (see panel (a) and Eq. 50) (d) Estimated site significances computed from
the first eigenvector ~ν(1) of the compressed ICOD-modified inverse covariance matrix.

4.4 Pseudocounts

As pseudocounts are often necessary to regularize real sequence data, and as a high fraction of pseudocounts is
generally used in DCA, we consider here whether the ICOD method is robust to the addition of pseudocounts.

Until now, we used only raw empirical frequencies obtained from sequence data. For instance, one-body frequencies
were obtained by counting the number of sequences where a given state occured at a given site and dividing by the
total number M of sequences in the ensemble. Covariances were computed from the empirical single-site frequencies
of occurrence of each state α at each site i, denoted by fei (α), and the empirical two-site frequencies of occurrence of
each ordered pair of states (α, β) at each ordered pair of sites (i, j), denoted by feij(α, β). Specifically, we obtained
the covariance matrix as Cij(α, β) = feij(α, β)− fei (α)fej (β) [13].

To avoid issues arising from limited sample size, such as states that never appear at some sites (which present
mathematical difficulties, e.g. a non-invertible covariance matrix [2]), one can introduce pseudocounts via a parameter
Λ [1,2, 13,14]. The one-site frequencies fi then become

fi(α) =
Λ

q
+ (1− Λ)fei (α) , (56)

where q is the number of states per site. Similarly, the two-site frequencies fij become

fij(α, β) =
Λ

q2
+ (1− Λ)feij(α, β) if i 6= j , (57)

fii(α, β) =
Λ

q
δαβ + (1− Λ)feii(α, β) = fi(α)δαβ . (58)

These pseudocount corrections are uniform (i.e. they have the same weight 1/q for all states), and their influence
relative to the raw empirical frequencies can be tuned through the parameter Λ. In DCA, a high value of f Λ has
been found to improve contact prediction: typically Λ ≈ 0.5 [1, 2, 15]. Note that the correspondence of Λ with the
parameter λ in Refs. [1, 2, 14] is obtained by setting Λ = λ/(λ+M).

From these quantities, we define the pseudocount-corrected covariances

C ′ij(α, β) = fij(α, β)− fi(α)fj(β) . (59)
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We show in Fig. 12 that adding pseudocounts as high as Λ = 0.3 still allows for accurate extraction of mutational
effects (Recovery 0.96) and provides a reliable prediction of sector sites.

Fig 12. Effect of pseudocounts on ICOD performance on synthetic sequence data with q = 21
possible states at each site. The same synthetic data as in Fig. 10 and 11 is used, but here pseudocounts are
employed, with weight Λ = 0.3. (a-c) Similar analysis as in Fig. 10: (a) Eigenvalues of the ICOD-modified inverse

covariance matrix. (b) Recovery of ~∆ from each eigenvector of the ICOD-modified inverse covariance matrix. (c)
First eigenvector of the ICOD-modified inverse covariance matrix. (d-f) Similar analysis as in Fig. 11: (d)

Eigenvalues of the compressed ICOD-modified inverse covariance matrix. (e) Recovery of site significances ||~∆||
from each eigenvector of the compressed ICOD-modified inverse covariance matrix. (f) Estimated site significances
computed from the first eigenvector of the compressed ICOD-modified inverse covariance matrix.

5 Performance of SCA

5.1 Analytical estimates for 〈Sl〉∗ and Cll′ for a single selection with binary sequences

Protein sectors were first discovered from sequence data using a PCA-based method called Statistical Coupling
Analysis (SCA) [11, 16]. Interestingly, in SCA, sectors are found from the eigenvectors associated to the largest
eigenvalues, while in ICOD they are found from the (modified) eigenvectors associated to the smallest eigenvalues.
This difference stems from the fact that SCA and ICOD do not start from the same matrix. For binary sequences,

SCA uses the absolute value of a conservation-weighted covariance matrix, C̃
(SCA)
ll′ = |φlCll′φl′ | (see main text and

Ref. [16]). When all amino-acid states are accounted for, SCA compresses each block of the conservation-weighted
matrix corresponding to two sites to obtain one positive value, e.g. the Frobenius norm of the block [11]. Conversely,
ICOD employs the regular covariance matrix, suppressing the diagonal blocks of its inverse at the last step before
diagonalization. To better understand the performance of SCA in recovering the site-dependent mutational effects
associated with a selective constraint, it is helpful to have analytical estimates for the average mutant fraction 〈Sl〉∗
at each site l and the covariance matrix Cll′ for an ensemble of binary sequences obtained from a single selection
using vector of mutational effects ~∆. To this end, we provide the following two ansatzes:

〈Sl〉∗ − 〈Sl〉 ≈ (T ∗ − 〈T 〉) ∆l∑
l ∆

2
l

, (60)

Cll′ ≈

{
−∆l∆l′σ

2
l σ

2
l′∑

l ∆2
l σ

2
l
, l 6= l′

σ2
l , l = l′,

(61)

where σ2
l = 〈S2

l 〉∗ − 〈Sl〉2∗ = 〈Sl〉∗ (1− 〈Sl〉∗) represents the variance of Sl. Recall that Sl ∈ {0, 1}, where 0 is the
reference state and 1 the mutant state, and that 〈·〉∗ denotes ensemble averages over the selectively weighted subset
of sequences, while 〈·〉 denotes averages over the unselected (unweighted) ensemble.
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Although we have not proven these two ansatzes, numerical tests (Fig. 13) have verified these two relations for

ensembles generated from a ~∆ with multiple sites of comparably large mutational effects so as not to be dominated
by a single site, i.e., ∆l/

√∑
l′ ∆2

l′ � 1 for any l. As a counterexample, the ~∆ from our elastic network model does
not satisfy this condition.

Fig 13. Numerical verification of the ansatzes in Eq. 60 and Eq. 61. We generate a sequence ensemble by
considering four values of relative selection bias γ ≡ (T ∗ − 〈T 〉)/

√
〈(T − 〈T 〉)2〉 = 0, 0.25, 0.5, 1 and for each case we

use a synthetic ~∆ with a sector size of 20. (a) Numerically computed average bias of the mutant fractions
〈Sl〉∗ − 〈Sl〉. Here, 〈Sl〉 = 0.5 for the unselected ensemble. (b) Numerically computed covariances Cll′ . The results

in (a,b) compare well with the analytical predictions (orange lines), provided that ∆l/
√∑′

l ∆
′2
l � 1 for any l. For

each case, 106 random sequences were generated to minimize noise from sampling.

5.2 Analysis of the SCA method

Here, we provide a detailed analysis of the SCA method from Refs. [11,16]. Following these references, the reweighting
factor is chosen to be

φl =
∂D (〈Sl〉∗, 〈Sl〉)

∂〈Sl〉∗
, (62)

where, for each site l, D (〈Sl〉∗, 〈Sl〉) is the Kullback-Leibler divergence between the distribution of mutant fractions
for the selected sequences and the background distribution:

D (〈Sl〉∗, 〈Sl〉) = 〈Sl〉∗ log
〈Sl〉∗
〈Sl〉

+ (1− 〈Sl〉∗) log
1− 〈Sl〉∗
1− 〈Sl〉

. (63)

In our case, the background distribution is obtained from the unselected sequence ensemble, for which 〈Sl〉 = 0.5.
Hence, we have

φl = log

[
〈Sl〉∗ (1− 〈Sl〉)
〈Sl〉 (1− 〈Sl〉∗)

]
, (64)

as illustrated in Fig. 14(a). In the regime of relatively weak conservation, i.e. when 〈Sl〉 is not close to 0 or 1, and
|〈Sl〉∗ − 〈Sl〉| � 〈Sl〉, a first-order expansion yields

φl ≈
〈Sl〉∗ − 〈Sl〉
〈Sl〉(1− 〈Sl〉)

, (65)

as shown in Fig. 14(b). Employing the ansatz (60) in this regime, we obtain

φl ∝ (T ∗ − 〈T 〉)∆l. (66)

This relation is verified in Fig. 14(c) for a sequence ensemble generated with a synthetic ∆l. Hence, the SCA
reweighting factor carries information about ∆l as long as T ∗ 6= 〈T 〉. In this regime, information about conservation
(namely φl) should thus be sufficient to recover mutational effects and sectors. This was indeed found to be the case
for some real proteins with a single sector [17]. However, when the selection bias, T ∗ − 〈T 〉, is small, random noise
due to finite sampling will typically swamp this relationship.
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Fig 14. Underpinnings of Recovery of mutational effect vector ~∆ by SCA. (a) Kullback-Leibler
divergence versus mutant fraction 〈S〉∗ for background mutant fraction 〈S〉 = 0.5. (b) Reweighting factor φ as a
function of mutant fraction 〈S〉∗ for background mutant fraction 〈S〉 = 0.5. (c) Reweighting factor φl and synthetic

∆l for an ensemble of sequences generated with a single selection at relative selection bias γ = 1. ~∆ was generated
with the first 50 sites as sector sites, and 50,000 sequences were employed, as in most of our examples using ICOD
(see above). (d-e) Performance of SCA and ICOD for this ensemble, respectively. In computing Recovery using SCA,

we use the normalized vector

√
ν

(j)
l to predict ~∆. The gray dashed lines in (d) and (e) indicate the random

expectation of Recovery (Eq. 11).
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In Refs. [11,16], the first eigenvectors of the conservation-reweighted SCA covariance matrix, C̃
(SCA)
ll′ = |φlCll′φl′ |,

were used to find sectors from sequence data. How does the first eigenvector of C̃(SCA) relate to the mutational
effect vector ~∆? Utilizing both Eq. 61 and Eq. 66, and assuming T ∗ 6= 〈T 〉, we obtain

C̃
(SCA)
ll′ ∝

{
∆2
l∆

2
l′σ

2
l σ

2
l′ , l 6= l′

∆2
l σ

2
l , l = l′.

(67)

Apart from the diagonal, the matrix is approximately proportional to the tensor product of ∆2
l σ

2
l with itself. If we

neglect the contribution from the diagonal elements of C̃(SCA), the first eigenvector ~ν(1) satisfies

ν
(1)
l ∝ ∆2

l σ
2
l . (68)

Eq. 68 explains why

√
ν

(1)
l carries information about ∆l. In Fig. 14(d), Recovery using SCA (and Eq. 8 of the

main text with

√
ν

(1)
l instead of ν

(1)
l ) is 0.97, which remains lower than Recovery using ICOD, which is 0.999 here.

Besides, Fig. 15 illustrates that Recovery of ~∆ by SCA is much better using

√
ν

(1)
l than ν

(1)
l .

Fig 15. Recovery of ~∆ from the first SCA eigenvector using ~ν(1) or
√
~ν(1). The sequence data are the

same as used for the blue curves in Fig. 3(a) of the main text. As suggested by Eq. 68, use of the square root of ~ν(1)

significantly improves Recovery.

5.3 Comparison between ICOD and SCA

In the main text, we compared the performance of ICOD and SCA with respect to Recovery of mutational-effect
vectors ~∆ in synthetic data (see Fig. 3 of the main text). We found that ICOD performs well over a broader range
of relative biases γ than SCA. The failure of SCA at biases close to zero can be explained by the fact that the
conservation weights φl then vanish (see Eq. 66). A further example of the failure of SCA for non-biased selections

is given by the case studied in Fig. 5, where we considered two selections, a biased one associated to ~∆1 and a
non-biased one associated to ~∆2. Fig. 16 shows that SCA recovers ~∆1 well, but performs badly for ~∆2, while ICOD
recovers both of them very well (see Fig. 5).

Fig 16. Performance of SCA for the double selection from Fig. 5. (a) Eigenvalues. (b) Before applying

ICA, the first eigenvector has high Recovery of ~∆1, but no eigenvector has substantial Recovery of ~∆2. This
difference matches our observation that SCA performs well for selections of intermediate bias, but not for unbiased
selections. (c) Applying ICA on the first two eigenvectors does not improve Recovery.

While the comparison of Recovery favors ICOD, SCA was originally used to identify sectors (in our model, sites
with important mutational effects under a given selection) rather than to recover complete mutational effect vectors
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~∆. Hence, in Fig. 17, we compare the ability of ICOD and SCA to predict the n sites with the largest mutational
effects. Note that this comparison is independent of whether we use ~ν(1) or

√
~ν(1) as the predictor in SCA, since the

square-root function is increasing and preserves order. Using this criterion, we again find that ICOD performs well
over a broad range of relative biases γ, while SCA only works well for sequences selected under moderate biases.

Fig 17. Comparison of sector-site identification by ICOD and SCA (see also Fig. 3 of the main

text). We use the synthetic ~∆ in (a) to selectively weight 5,000 random sequences at four relative bias values
γ ≡ (T ∗ − 〈T 〉)/

√
〈(T − 〈T 〉)2〉 = 0, 1, 2, 3 and test the ability of ICOD or SCA to correctly predict the sites with

the n largest mutational effects. (b) Magnitudes of mutational effects of ~∆ by rank. (c-d). True Positive (TP) rates
obtained by taking the first eigenvector ~ν(1) from either ICOD or SCA, generating a ranked list of sites of

descending |ν(1)
l | at each site l, and computing the fraction of the top n sites in this predicted ordering that are also

among the top n sites of the actual ordering of mutational effect magnitudes |∆l|. The effect of relative bias γ on
Recovery is shown in Fig. 3 of the main text. (c) As expected, the prediction of ICOD is very good under all relative
biases. (d) On the other hand, SCA does not perform well at the smallest or largest relative biases.

6 Performance of a method based on the generalized Hopfield model

As mentioned in the main text, we also compared ICOD with another PCA-based approach developed in Ref. [4],
which employs an inference method specific to the generalized Hopfield model. For L Ising spins (sl ∈ {−1, 1} for
1 ≤ l ≤ L), the Hamiltonian of the generalized Hopfield model reads (see Eq. 6 in Ref. [4])

H(~s) = −
L∑
l=1

hl sl −
1

2L

N∑
i=1

(
L∑
l=1

ξi,l sl

)2

+
1

2L

N ′∑
i=1

(
L∑
l=1

ξ′i,l sl

)2

, (69)

where hl is the local field at site l, while ~ξi = (ξi,1, . . . , ξi,L) is an attractive pattern and ~ξ′i = (ξ′i,1, . . . , ξ
′
i,L) is a

repulsive pattern. Here there are N attractive patterns and N ′ repulsive ones. In our model, in the single-selection
case, the fitness of a sequence ~s in the Ising representation reads (see above, Sec. 3.1.1, Eq. 15)

w(~s) = −κ
2

(
L∑
l=1

Dlsl − α

)2

= −κ
2

( L∑
l=1

Dlsl

)2

− 2α

L∑
l=1

Dlsl + α2

 , (70)

with Dl = ∆l/2 and α = T ∗ −
∑
lDl. Recalling that fitnesses and Hamiltonians have opposite signs, a comparison

of Eqs. 69 and 70 shows that ~∆ plays the part of a repulsive pattern in the two-body coupling terms, with the exact
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correspondence given by ~ξ′ = ~∆
√
κL/2. Note that in our model the local fields are proportional to the components

of ~∆.
Ref. [4] proposed a method to infer attractive and repulsive patterns from data generated using a generalized

Hopfield model Eq. 69. Introducing the correlation matrix G, which is related to the covariance matrix C through

Gll′ =
Cll′

σ̃lσ̃l′
, (71)

where σ̃2
l = 〈s2

l 〉∗−〈sl〉2∗ = 1−〈sl〉2∗. Ref. [4] found, to lowest order, the following approximation for a single repulsive

pattern ~ξ′ (see Eq. 9 in Ref. [4]):

ξ′l ≈

√
L

(
1

λ(L)
− 1

)
ν

(L)
l

σ̃l
, (72)

where λ(L) is the smallest (last) eigenvalue of the correlation matrix G and ν
(L)
l is the associated eigenvector. This

yields

∆l ∝
ν

(L)
l

σ̃l
. (73)

Inference of ~∆ based on Eq. 73 is referred to as GHI (for Generalized Hopfield Inference) below.
GHI performs very well for the sequence ensembles from the elastic network model used in Fig. 1 and Fig. 2

of the main text (Fig. 18). Importantly, just as for simple PCA and for ICOD (see main text), the top Recovery

is obtained for the (modified) bottom eigenvector of the covariance matrix, consistently with ~∆ being a repulsive

pattern, but the large-eigenvalue modes also contain some information about ~∆ (Fig. 18).

Fig 18. Performance of GHI on sequence ensembles generated with our elastic-network ~∆. (a)
Eigenvalues of G and Recovery under mild selection bias, as in Fig. 1 in the main text. (b) Eigenvalues of G and
Recovery under extreme selection bias, as in Fig. 2 in the main text. The green dashed lines in (a,b) indicate the
random expectation of Recovery (Eq. 11).

In Fig. 19, we systematically compare all methods discussed in our work to recover ~∆ from sequence data under
various selection biases, using different sector sizes, for selectively weighted ensembles of 50,000 random sequences.
We focus on the case of a single selection and compare Recovery of ~∆ according to:

• ICOD, using the first eigenvector of the modified inverse covariance matrix C̃−1 (see main text, Eq. 10)
• PCA, using the last principal component of the data (last eigenvector of the covariance matrix, see main text)

• SCA, using the first eigenvector of the absolute value of a conservation-weighted covariance matrix, C̃
(SCA)
ll′ =

|φlCll′φl′ | (see main text and Ref. [16])
• GHI, using the reweighted last eigenvector of the correlation matrix (see Eqs. 71 and 73).

Overall, ICOD and GHI perform best. For small selection biases, all methods perform accurately, except SCA, which
fails when selection bias vanishes, as explained above. When the sector size is small compared to the sequence length
L (Fig. 19 (a-d)), GHI performs a little bit better than ICOD for relatively small selection biases (however Recovery
remains & 95% with ICOD). Conversely, GHI is significantly outperformed by ICOD for relatively large selection
bias, and the performance of PCA and SCA falls off quite rapidly in this regime. The performances of ICOD, PCA,
and GHI become similar when the sector size becomes comparable to the sequence length (Fig. 19 (e, f)).

We further find that GHI is more sensitive to the size of the sequence ensemble than ICOD, although it becomes
the most accurate for very large dataset sizes (see Fig. 20). The performance of ICOD is quite robust to dataset
size. Note that PCA outperforms other methods when the data size becomes very small (Fig. 20, number of
sequences = 500).
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Fig 19. Comparing Recovery of different methods for various ~∆s. Here, GHI refers to inference based on
Eq. 73. Curves are obtained by averaging over 100 realizations, each for an ensemble of 50,000 random sequences.
For synthetic ~∆s, each realization corresponds to a new ~∆.

Fig 20. Effect of dataset size on Recovery of ~∆. Selectively reweighted ensembles of 5× 102, 5× 103, 5× 104,
and 5× 105 random sequences are generated for the elastic-network ~∆ and synthetic ~∆s with sector sizes 1, 10, and
50. All results are averaged over 100 realizations, except those using 5× 105 sequences, where only 5 realizations
were used. For synthetic ~∆s, each realization employs a different ~∆ with the same sector size. For the case of 500
sequences, some Recoveries were not computed at high biases due to numerical instabilities.
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Overall, we find that GHI is very well suited to infer ~∆ from very large synthetic datasets. However, ICOD is
more robust to variation of dataset size and to selection bias, which should be an advantage in the application to
real protein data.

7 Application of ICOD to a multiple sequence alignment of PDZ do-
mains

Our general physical model for sectors provides insights into the statistical signatures of sectors in sequence data. In
particular, we have found that the primary signature of physical sectors lies in the modes associated with the smallest
eigenvalues of the covariance matrix, even though there is often additional signal from these sectors in the large
eigenvalue modes, as studied more conventionally, e.g. in SCA. The success of ICOD on synthetic data demonstrates
that information about sectors can indeed be extracted from the small eigenvalue modes of the covariance matrix.

How well does ICOD perform on real sequence data? Here, we apply ICOD to an actual alignment of sequences
of PDZ domains from the Pfam database (https://pfam.xfam.org/) containing 24,934 sequences of length L = 79
(corresponding to sites 313-391 in the numbering in Fig. 2 of Ref. [18]). In Ref. [18], sites important for the specific
binding of PDZ to peptide ligands were identified experimentally via complete single-site mutagenesis. In particular,
20 sites showing particularly high mutational effects were deemed functionally significant [18]. It was further shown
that 15 among the 20 sector amino acids found by SCA (i.e. 75%) were also functionally significant sites.

In order to compute the empirical covariance matrix of the data, we first removed sites with more than 15%
gaps (11 sites out of 79). To eliminate the confounding effects of very rare residues at particular sites, we used a
pseudocount weight Λ = 0.02.

Next, we performed both SCA and ICOD using this empirical covariance matrix:
• For SCA, we computed the conservation reweighting factors as in Refs. [11,16], using the background frequency

values from Ref. [16]. We compressed the conservation-reweighted covariance matrix using the Frobenius norm,
and we focused on the first eigenvector of this reweighted and compressed covariance matrix in order to predict
sector sites. Finally, we took the square root of each component of this eigenvector to predict the mutational
effect at each site (see above, Section 5.2, and Ref. [11]).

• For ICOD, we inverted the covariance matrix and set its diagonal blocks to zero, thus obtaining the ICOD-
modified inverse covariance matrix (see Eq. 49). Next, we computed the Frobenius norm of each 20 × 20
block associated to each pair of sites (i, j) according to Eq. 52. The magnitude of the l-th component of

the first eigenvector ~ν(1) of this compressed L × L matrix, denoted by ||ν(1)
l ||, is the ICOD prediction of

the overall mutational effect at site l (see above, Section 4.3, especially Fig. 12). Since mutational effects
were experimentally measured with respect to the wild-type residues [18], we used as reference the wild-type
sequence of the PDZ domain employed in Fig. 1 of the main text and retained this reference-sequence gauge to
perform ICOD, thus allowing direct comparison to experiments.

We then assessed the ability of SCA and ICOD to predict experimentally-measured mutational effects [18].
Specifically, we compared SCA and ICOD predictions to the overall mutational effects corresponding to the Frobenius
norm of the experimentally-measured residue-specific mutational effects ∆l(α) with α ∈ {1, . . . , 20} :

||∆l|| =

√√√√ q∑
α=1

(∆l(α))
2
, (74)

which is the counterpart in the reference-sequence gauge of the “site significance” introduced in the zero-sum gauge
in Eq. 55. The ability of SCA and ICOD to identify the sites with the experimentally most important mutational
effects is shown in Fig. 5 in the main text. Here, we discuss the impact of parameters on these results. Fig. 21 shows
the effect of varying the cutoff for removal of sites with a large proportion of gaps. As illustrated in panel (a), sites
with a fraction of gaps larger than a cutoff are discarded. Many of these sites are on the edges of the PDZ domain,
and tend to be less conserved. Fig. 21(b) shows that ICOD performance is robust to variations of this cutoff within
a reasonable range. We have chosen a cutoff of 15% in the rest of this analysis.
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Fig 21. Impact of varying the cutoff for removal of sites with a large fraction of gaps. (a) Fraction of
sequences that have a gap at each site. Sites with a fraction of gaps larger than the cutoff shown by the dashed line
are discarded in the rest of our analysis. (b) Impact of varying the gap-fraction cutoff on the performance of ICOD.
A pseudocount weight of Λ = 0.02 is used.

Fig. 22 shows the effect of varying the pseudocount weight, both for ICOD and for SCA. Panels (a) and (b)
show the TP rate, defined as the fraction of the top 20 predicted sites that are among the 20 sites with the largest
experimentally-determined mutational effects. Panels (c) and (d) show the Pearson correlation between ICOD
or SCA predictions of mutational effects and the corresponding experimental measurements. Both ICOD and
SCA identify experimentally-important sites significantly better than random expectation over the whole range of
pseudocounts shown. However, ICOD performs best with small but nonzero pseudocount weights (panels (a) and
(c)), while the performance of SCA is more robust to changing the pseudocount weight (panels (b) and (d)).

Fig 22. Impact of the pseudocount weight Λ on the performance of ICOD and SCA. (a) Fraction of
the 20 top sites predicted by ICOD that are among the 20 sites with the largest experimentally-determined
mutational effects (“TP rate”) versus pseudocount weight. The TP rate definition is the same as that shown in
Fig. 5 of the main text. Gray dashed line: random expectation for the TP rate, namely 20/68=0.29 (68 sites are left
after removing those with a gap fraction larger than the cutoff). (b) Counterpart of (a) for SCA. (c) Pearson
correlation: between mutational effects predicted by ICOD and those measured experimentally at each site
(ICOD-Exp; data from Fig. 5(c) of the main text for Λ = 0.02); between mutational effects predicted by ICOD and
conservation scores φl (ICOD-Conserv; see Ref. [11] and Eq. 62 in the binary case); and between experimentally
measured mutational effects and conservation scores φl (Exp-Conserv). (d) Counterpart of (b) for SCA. In all
panels, a gap-fraction cutoff of 15% is used.

Since residue conservation plays a very important part in the PDZ sector [17], we compared prediction based
simply on conservation to those of SCA and ICOD. We employed the conservation scores φl used in SCA [11],
which are a generalization of Eq. 62 to 21 states. Conservation alone identifies 70% of the 20 sites with largest
experimentally-determined mutational effects, versus 85% for ICOD (for Λ = 0.02) and 75% for SCA (see Fig. 5
in the main text). In addition, the Pearson correlation between conservation scores and experimentally-measured
mutational effects is significant (see Fig. 23(c)), even though it is smaller than between ICOD or SCA scores and
experimentally-measured mutational effects (see Fig. 23(a-b)). In fact, both ICOD and SCA scores are significantly
correlated with conservation scores (see Fig. 23 (d-e)). In the case of SCA, this is not surprising given that
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conservation scores are explicitly used to weight the covariance matrix. Interestingly, ICOD naturally identifies these
conserved sites as being important. This correlation between ICOD and conservation highlights the ability of ICOD
to identify functionally important amino acids in a principled way that only relies on covariance.

Fig 23. Predicting experimentally-measured mutational effects using ICOD, SCA, or conservation.
(a) Experimentally-measured mutational effect versus mutational effect predicted by ICOD for each site of the PDZ
sequence. (b) Experimentally-measured mutational effect versus mutational effect predicted by SCA for each site of
the PDZ sequence. (c) Experimentally-measured mutational effect versus Conservation score φl for each site of the
PDZ sequence. In panels (a, b, c), to highlight the matches between the top 20 predictions and the top 20
experimentally important sites [18], correct hits are shown in red, false negatives in blue, and false positives in green.
(d) Conservation score φl versus mutational effect predicted by ICOD for each site of the PDZ sequence. (e)
Conservation score φl versus mutational effect predicted by SCA for each site of the PDZ sequence. In all panels, a
pseudocount weight Λ = 0.02 and a gap-fraction cutoff of 15% were used.
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