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Supplementary Methods

Theory and data analysis for serial clonal data

This supplementary methods include (1) the statistical model used to reject the hypothesis that HSCs are equipotent
based on their clonal dynamics following serial transplantation; and (2) considerations and methods for error correction
of clonal barcodes in scRNA-Seq data sets.
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I. CLONE SIZE STATISTICS OF EQUIPOTENT STEM CELLS

A. Model definition

In our experiment, genetically barcoded HSCs are transplanted into the first host mouse, and part of the clonal
output from the first transplantation are further transplanted into the secondary mouse. Both the clonal output from
the first transplantation (1T) and secondary transplantation (2T) are profiled via single-cell sequencing. Our goal is to
construct a distribution over the expected outcomes of such an experiment, assuming a null model in which each HSC
behaves independently and has equal potency to self-renew and to generate differentiated cells after engraftment. By
‘equal potency’ we specifically mean that the behavior of two sister HSCs should be as different as that of two randomly
selected HSCs. The self-renewal and differentiation of each cell can still be highly variable. To relate such a model
to experimental observables, we must account for the statistical processes in this experiment, including the random
sampling of cells, uncertainty in the engraftment of HSCs, and variation in their clonal expansion. We incorporate
all of these uncertainties using the formalism of a probabilistic directed graphical model (PDGM) (Supplementary
Methods Fig. 1), which explicitly encodes the conditional dependence between different stochastic variables and lends
itself to rapid numerical calculation of the Likelihood of the observed data [1].

Referring to Supplementary Methods Fig. 1, the PDGM defines a distribution over nine latent variables and three
observed variables, representing the size of each clone at subsequent stages of the experiment, according to the notation
in Supplementary Methods Fig. 1, and as summarized in Supplementary Methods Table I. We introduce a compact

notation for the clone size: ~N = (H,K), where H is the number of HSCs in a clone and K is the number of Kit+
progenies. Referring to Supplementary Methods Fig. 1, the nested structure of the PDGM reflects the successive
steps occurring after a single HSC successfully engrafts in the primary transplantation, assuming that all HSCs are
equipotent at the time of transplantation. Specifically, keeping in mind the equipotency assumption of this model,
the successive steps of the PDGM are:

1. A single HSC engrafts per clone [ ~N1,a = (1, 0)] in the primary host.

2. Each engrafted HSC expands for three months to give rise to a clone of size ~N1,b. The clone size distribution after

expansion F( ~N1,b) is estimated empirically as described shortly.

3. Only a fraction of cells are successfully isolated from the bone marrow of the primary transplantation host, resulting in a
clone of smaller size ~N1,c. Here, sample extraction also includes the following step of FACS designed for enriching HSCs.
Survival of the extraction process is assumed to be i.i.d. for each HSC across all clones.
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4. Then, a fraction of the cells are binomially sampled for immediate scRNA-Seq analysis ( ~N1,d cells are sampled). Sampling
outcome is an i.i.d. Bernoulli process for all HSCs.

5. Only a fraction of the cells sampled for sequencing are successfully barcoded in the inDrop device, giving the final observed
number of cells at 1T as ~N1 cells. Survival of scRNA-Seq is an i.i.d. Bernoulli process for all HSCs.

6. Of the remaining ( ~N1,c − ~N1,d) cells, a fraction of HSCs ( ~N+
1,d) are transplanted into one secondary mouse (R1) and the

remaining into another secondary mouse (R2). As the splitting is random and i.i.d., the distribution between the two
secondary hosts is multinomial.

7. For each of the R1 and R2 secondary host mice, only a subset of transplanted HSCs will successfully engraft ( ~N
(i)
2,a;

i = 1, 2). We assume that engraftment outcome is i.i.d. for all HSCs across all clones.

8. The engrafted HSCs expand in the secondary hosts for 3 months to give rise to a clone of size ( ~N
(i)
2,b; i = 1, 2). The

expansion of each individual HSC in each clone is assumed to follow the same distribution as in the primary host, F .

9. These cells are extracted and profiled by scRNA-Seq, giving the final observed clone sizes ~N2,1 in 2T-R1, and ~N2,2 in
2T-R2. Survival of extraction and purification follows the same i.i.d. processes as in steps 4,5.

P ( ~N1,a, . . . , ~N
(2)
2,b ) = δH1,a,1δK1,a,0 × Pb( ~N1,b| ~N1,a)× Pc( ~N1,c| ~N1,b)× Pd( ~N1,d| ~N1,c)

×Pe( ~N1| ~N1,d)Pf ( ~N+
1,d| ~N1,c − ~N1,d)× Pg( ~N

(1)
2,a |H

+
1,d)× Pb( ~N

(1)
2,b |H

(1)
2,a)

×Ph( ~N
(1)
2 | ~N

(1)
2,b )× Pg( ~N

(2)
2,a |H1,c −H1,d −H+

1,d)× Pb( ~N
(2)
2,b |H

(2)
2,a)× Ph( ~N

(2)
2 | ~N

(2)
2,b )

Supplementary Methods Fig. 1. A probabilistic directed graphical model (PDGM) of the serial transplantation

experiment for a single clone. Each node represents the clone size ~N = (H,K), where H is the number of HSCs and K
is the number of Kit+ cells. The model defines the joint distribution shown below its diagrammatical representation, with
distributions Pa . . . Ph defined in Supplementary Methods Table I. Symbols in red are success rates for the corresponding
sampling steps modeled as binomial processes (see Supplementary Methods Table I and section I A for more details). The
empirical clonal expansion distribution F is described in the text.

This model structure can be parameterized by five probabilities, most of which are independently estimated from
the experimental design. The parameters are: the HSC engraftment probability peg (step 7), the probability of cell
extraction and recovery pex (steps 3 and 9), the cell fraction sampled for scRNA-Seq after the primary transplantation
psp1 (step 4), the cell fraction transplanted into each of the secondary host mice psp2 (step 6), and the fraction of
cells successfully captured during scRNA-Seq pseq (steps 5 and 9). In addition, the model accepts as input a clonal
expansion distribution F (steps 2 and 8), whose structure is defined in the following section. For reference in the
remaining discussion, the PDGM variables and their distributions are summarized in Supplementary Methods Table I.

B. PDGM parameter values

The parameter values are summarized in Supplementary Methods Table II. All parameters can be constrained
from independent empirical sources. Specifically: the values of psp,1 and psp,2 were both 0.5, because in each of the
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Variable Description Distribution

~N1,a Clone size initially transplanted (1 HSC) δH,1δK,0

~N1,b Clone size after 3 months primary transplant Pb ∼ F
~N1,c Clone size surviving BM extraction and FACS Pc ∼ Bin( ~N1,b, pex)
~N1,d Number of cells sampled for scRNA-Seq after primary transplant Pd ∼ Bin( ~N1,c, psp1)
~N1 Observed clone size in primary scRNA-Seq Pe ∼ Bin( ~N1,d, pseq)

~N1,c − ~N1,d Number of cells transferred for tranplantation into secondary hosts -
~N+
1,d Number of cells transplanted into secondary host R1 Pf ∼ Bin( ~N1,c − ~N1,d, psp2)

~N1,c − ~N1,d − ~N+
1,d Number of cells transplanted into secondary host R2 -

~N
(i)
2,a Cells successfully engrafted into secondary host Ri (i = 1, 2) Pg ∼ (Bin(H1,d, peg), 0)
~N

(i)
2,b Clone size after 3 months secondary transplant in host Ri (i = 1, 2) Pb ∼ FH2,a

~N2,i Clone size detected after extraction and scRNA-Seq from host Ri (i = 1, 2) Ph ∼ Bin( ~N2,b, pseqpex)
~N2

~N2.1 + ~N2.2 -

Supplementary Methods Table I. Summary of model variables for the PDGM shown in Supplementary Meth-
ods Fig. 1. In the table, Bin(N, p) is the Binomial distribution with N trials and probability of success p, Bin( ~N, p) =
(Bin(H, p),Bin(K, p)), and Fk is a convolution of F with itself k times.

respective splitting steps half of the volume of a well-mixed cell suspension was transferred to sequencing (psp,1) or
into each of the secondary host mice (psp,2). The value of pseq reflects the performance of the inDrop device, and is
reflected in the ratio of the number of observed single cell transcriptomes to the number of cells loaded into the device
(pseq = 70%). The value of pex reflects the product of the efficiencies of HPC isolation from mice, and the survival of
flow cytometry (FACS). To estimate these survival fractions, we measured the number of nucleated hematopoietic cells
(HPCs) immediately after bone marrow extraction (∼ 3.5×108). As the number of nucleated HPCs in the same strain
of mouse is relatively stable and is estimated to be around 5× 108 [2], the extraction efficiency is approximately 70%.
The process of enriching for HSCs through flow cytometry (FACS) has an efficiency of 80% based on the difference
between the number of cells recorded by the FACS machine and the final number of cells counted in suspension.
Hence, the compound probability in this step is pex = 0.56. Finally, we define the HSC engraftment probability as
the probability that an HSC gives rise to a surviving clone after 3 months post-transplantation. We have performed
primary transplantation for several different mouse, and the ratio of the observed clone numbers to the transplanted
HSCs, which is a rough approximation for peg, ranges from 0.07 to 0.22. Given this broad range, we selected a value
of peg = 0.137 that best reproduced the observed ratio of clone number between 2T and 1T, i.e., 133/414 = 0.32
(Supplementary Methods Fig. 2B).

Supplementary Methods Table II. Summary of PDGM parameter values.

C. Generating the clonal expansion distribution F

Though the distribution F over the number of progeny from each HSC is not measured directly, it can be numerically
estimated through Bayesian inference under the equipotency assumption of the model. With q = pexpsp1pseq and
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{ ~N1} = { ~N (1)
1 , . . . , ~N

(N)
1 } being the list of observed clone sizes after sequencing the probability distribution for the

output of a single engrafted HSC is inferred to be,

F( ~N1,b|
{
~N1

}
, q) = α

1

N

∑
k

P (H1,b|H(k)
1 , q)P (K1,b|K(k)

1 , q) + (1− α)P (H1,b|0, q)P (K1,b|0, q), (1)

where

P (X1,b|X1, q) =

{(
X1,b

X1

)
qX1+1(1− q)X1,b−X1 if X1 ≥ 0, X1,b ≥ X1

0 otherwise
(2)

and α is the probability of detecting at least one cell from an engrafted HSC in the 1T measurement. The value
of α is determined self-consistently from the PDGM (discussed below). The sum in Eq. (1) averages F over all
observed clone sizes, with the final term correcting the distribution to account for clones that were not observed due

to technical drop-outs during cell sampling for analysis (as observed clones satisfy the requirement H
(j)
1 +K

(j)
1 > 0).

To determine α, we note that the self-consistent equation for the probability not to observe a clone in this model is

1− α =
∑
~N1,b

F( ~N1,b|
{
~N1

}
, q)Bin(0; q,H1,b)Bin(0; q,K1,b), (3)

where Bin(0; q,X) is the Binomial probability to sample 0 cells from X cells with the success rate q. Substituting in
F from Eq. (1), after simplification we obtain

α =
1− β0

1 + β1 − β0
, (4)

where β0,1 take the forms:

β0 = [P0(0, q)]2, β1 =
1

N

∑
j

P0(H
(j)
1 , q)P0(K

(j)
1 , q), (5)

and with P0(X1, q) being:

P0(X1, q) =
∑
X1,b

P (X1,b|X1, q)Bin(0; q,X1,b) =

{∑
X1,b>=X1

(
X1,b

X1

)
qX1+1(1− q)2X1,b−X1 if X1 ≥ 0

0 otherwise.
(6)

Note that P0(X1, q) is negligible when X1q � 1. This property can be used to speed up the numerical computation
of β1 and β2. In Eq. (4), we can see that when β1 � 1 then α ≈ 1. This result states that an observed clone is likely
to be re-observed if re-sampled from the bone marrow, which agrees well with our intuition. Using the 414 clones
observed in 1T in the experiment, we inferred that α = 0.887.

To derive Eq. (2), we invoke Bayes’ law, which relates the desired distribution P (X1,b|X1, q) to the observed
distribution P (X1|X1,b, q) through the relation,

P (X1,b|X1, q) =
P (X1|X1,b, q)P (X1,b)

P (X1|q)
.

From the structure of the PDGM (see Supplementary Methods Table I), P (X1|X1,b, q) is a binomial distribution. We
assume a naive prior P (X1,b) = const, and the quantity P (X1|q) is a normalization constant. Using the binomial
formula and normalizing the result, we obtain Eq. (2). Note that the distribution P (X1,b|X1, q) in Eq. (2) takes the
form of a negative binomial if we perform the transformation X1 → X1 − 1 and X1,b → X1,b − 1.

D. Model implementation

The PDGM defines the joint distribution over the number of cells derived from an engrafted HSC in 1T (Supple-
mentary Methods Table I). Since only N̄1, N̄2,1 and N̄2,2 are observable in experiments, we need only to calculate the
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Supplementary Methods Fig. 2. Model implementation and comparison with 1T statistics. (A), sampling of
the actual HSC clone size (H1,b) in T1 from the PDGM, given the observed HSC clone size (H1). The inference is based
on Eq. (1). (B), Histogram of the model-predicted ratio between the observed 2T and 1T clone number. (C), Histogram of
the model-predicted 1T clone number. (D), Histogram of the observed vs. model-predicted HSC clone sizes (H1) in 1T. (E),
Histogram of the observed vs. model-predicted Kit clone sizes (K1) in 1T. (F), Histogram of the model-predicted Pearson
correlation between 1T HSC clone size in 1T Kit+ clone size. The blue dashed line in each panel indicates the corresponding
value of experimental data, and the corresponding p value is also indicated.

marginal distribution over these three variables. The observed data set consists of N = 485 detected clones (414 clones

in 1T and 133 in 2T, with 61 shared clones) for which Ui = { ~N (i)
1 , ~N

(i)
2,1,

~N
(i)
2,2} are observed for the i-th clone. We

define the data set as the joint list of observed values Ωobs. = {U1, . . . , UN}. The PDGM predicts a hyperdistribution
over Ω expected from the equipotency model. We make use of a Monte Carlo approach to sample the PDGM, as
follows:

1. We sample the PDGM to generate 468 clones. This number results in an average of 414 clones observed in
1T and 133 clones observed in 2T (Supplementary Methods Fig. 2BC). The sampling procedure proceeds as
in Supplementary Methods Fig. 1: a value of N1,b is sampled, followed by a value for N1,c, and so on. For

each clone we retain only Ui = { ~N1, ~N2,1, ~N2,2} for the i-th clone, discarding latent model variables. The 485
simulated Ui provide a single realization of Ω.

2. We repeat Step 1 L = 104 times to generate a distribution over Ω.

E. Comparison with experimental data

To explore which observed aspects of the data are (in)consistent with the equipotency model defined by the PDGM,
we defined multiple test statistics summarized in Supplementary Methods Table III from the data set Ωobs.. For each,
we then evaluated the fraction of PDGM-sampled data sets Ω that generate values at least as extreme (larger or
smaller) as seen in the data Ωobs.. Formally our approach defines a two-tailed p-value for each test statistic. See
Supplementary Methods Fig. 2F for an example of the distribution of PDGM-sampled values compared to the observed
value.

The assessed test statistics comprise of correlations between different cell counts (each clone Ui = { ~N (i)
1 , ~N

(i)
2,1,

~N
(i)
2,2}

is represented by six numbers, allowing for fifteen pairwise correlations). In addition, we calculated higher-order
relationships between the observed quantities by considering correlations betwen clonal expansion Ej and clonal
activity Aj , for the first and second transplantation (j = 1, 2 respectively), defined as follows:

Aj =
Kj + ε

Hj + ε
for j ∈ {1, 2}, (7)
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E1 =
N1 + ε

1 + ε
, E2 =

N2 + ε

H1 + ε
, E2.j =

N2.j + ε

H1 + ε
for j ∈ {1, 2}. (8)

Here, ε is a pseudocount used to avoid large contributions from clones with very small or no HSCs, and is set to be
1. We also assessed whether the 1T activity predicts HSC (Kit+ cells) specific expansion in 2T, which are defined as
follows:

EH
j =

Hj + ε

H1 + ε
, EK

j =
Kj + ε

H1 + ε
, for j ∈ {2, 2.1, 2.2}. (9)

To this end, we partitioned clones according to their activities into active clones (top 40% values of A1) and inactive
clones (bottom 60% values of A1), and evaluated the statistical difference of the corresponding T2 expansion (denoted
as Eac

j for active clones and Ein
j for inactive ones) for these two groups of clones, in terms of both the difference of

average expansion and of the standard deviation of expansion (Supplementary Methods Table III).

Comparison Test statistic Experimental value P value

HSC1T –HSC2T C(H1, H2) 0.74 0.44

HSC1T –Kit2T C(H1,K2) 0.54 0.13

Kit1T –Kit2T C(K1,K2) 0.24 0.14

Kit1T –HSC2T C(K1, H2) 0.27 0.16

1T–2T C(H1 +K1, H2 +K2) 0.44 0.13

HSC2T –Kit2T C(H2,K2) 0.91 0.12

Exp1T –Exp2T C(E1, E2) 0.03 0.22

Act1T –Act2T C(A1, A2) 0.04 0.08

Exp1T –Act2T C(E1, A2) 0.58 < 0.0001

Act1T –Exp2T C(A1, E2) -0.08 < 0.0001

HSCR1–KitR1 C(H2.1,K2.1) 0.78 0.44

HSCR1–HSCR2 C(H2.1, H2.2) 0.83 0.027

HSCR1–KitR2 C(H2.1,K2.2) 0.76 0.053

KitR1–KitR2 C(K2.1,K2.2) 0.91 0.0004

R1–R2 C(H2.1 +K2.1, H2.2 +K2.2) 0.91 0.0048

ExpR1–ExpR2 C(E2.1, E2.2) 0.67 0.0013

Exp2Tinactive–Exp
2T
active Mean(Ein

2 )/Mean(Eac
2 ) 3.7 0.049

Exp2Tinactive–Exp
2T
active S.t.d(Ein

2 )/S.t.d.(Eac
2 ) 36 0.003

(HSC-Exp)2Tinactive–(HSC-Exp)
2T
active Mean(EH,in

2 )/Mean(EH,ac
2 ) 2.5 0.056

(HSC-Exp)2Tinactive–(HSC-Exp)
2T
active S.t.d(EH,in

2 )/S.t.d.(EH,ac
2 ) 19 0.017

(Kit-Exp)2Tinactive–(Kit-Exp)
2T
active Mean(EK,in

2 )/Mean(EK,ac
2 ) 1.9 0.24

(Kit-Exp)2Tinactive–(Kit-Exp)
2T
active S.t.d(EK,in

2 )/S.t.d.(EK,ac
2 ) 22 0.022

Supplementary Methods Table III. List of comparisons between the equipotency model and observed data. The
p-value gives the fraction of PDGM samples of the data set Ω that gives a test statistic at least as extreme as observed in
experiment (two-tailed test).

F. Supplemental discussion of PDGM results

In this section we provide a brief statistical interpretation of the analytical results, extending on the discussion in
the manuscript. As can be seen from Supplementary Methods Table III, the equipotency model reproduces many
features of the observed clone size distribution (represented by non-siginificant p-values), while significantly differing
in several important ways. We found that the p-values were robust to variation in the PDGM parameter values.

Among the nontrivial predictions involving 2T clonal behavior, we tested how activity in 1T or 2T may predict
expansion in 1T or 2T. Two couplings were found statistically significant (Supplementary Methods Table III, second
block): 1) 1T expansion and 2T activity (C = 0.58, p < 0.0001); 2) 1T activity and 2T expansion (C = −0.08, p <
0.0001). More detailed analysis revealed that the high correlation between 1T expansion and 2T activity is contributed
mainly by a single clone with significantly large expansion in 1T and activity in 2T, thus not reflecting a general trend
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in the data. The negative relationship between clonal activity in 1T and expansion in 2T is robust, as shown by the
statistical difference of the cell-type specific expansion between active and inactive clones (Supplementary Methods
Table III, bottom block).

II. ERROR CORRECTION OF CLONAL BARCODES

In this supplemental note we describe the characterization and correction of errors in clonal barcodes.

In this study, each cell profiled by scRNA-Seq is detected to express a set of clonal barcodes stably integrated
following delivery by lentiviral infection. A cell may express more than one barcode reflecting multiplicity of lentiviral
infection. In ideal data, all cells from the same clone will express the exact same set of barcode sequences. In practice,
there are three sources of error in clonal barcodes (hereafter ‘BCs’): 1) the readout of a given BC sequence may
contain sequencing errors; 2) for a given cell, certain BCs may fail to be detected by scRNA-Seq; and 3) cell doublets
or droplet emulsion instability can also lead to an artificial set of BCs for a single cell. The problem of doublets is
partially addressed by Scrublets [3] in early steps of data analysis.

To overcome the first error (sequencing errors), we assigned cells to the same clone if they expressed BCs differing
by a Hamming distance D ≤ 4. This is justified by considering the Hamming distance histogram between any pair
of distinct BCs in our 1T-2T dataset (Supplementary Methods Fig. 3A,B). For randomly-generated barcodes, such
a histogram is expected to follow a unimodal binomial distribution with a peak at 0.75N (with N being the length
of the random barcode, which is 29 here). We detected a second minor mode of the distribution at D = 2, which
is understood to arise from sequencing error. A clear separation between the two modes occurs at D = 4. Further,
for each of the clones defined in this manner, we identified a single BC sequence with the most UMI-corrected read
counts. We expected this BC sequence to represent the error-free (or original) sequence, from which other sequences
in the clone were derived. Consistent with this expectation, we found that the average distance between original
BCs and other BCs within the each clone is 1.07 (Supplementary Methods Fig. 3C), indicating that most BC errors
corresponding to just over one sequencing error on average. By contrast, the average distance between two random
BCs within each same clone is larger 1.94 (Supplementary Methods Fig. 3B). This correction procedure collapsed
799 observed unique BCs into 321 clones.

To address the second error (barcode drop-out), we take the following two approaches. Although the identified
clone number differs greatly, the pattern of clonal behavior across 1T and 2T remains the same.

• No correction: only cells with a fully identical set of BCs are classified as belonging to the same clone (after
error correction as discussed above). This approach leads to 485 clones. The number of cells and shared clones
for each sample set is summarized in Supplementary Methods Table IV, which is used in our paper. This data
can be accessed in the attached data.txt file, which include, for each clone, the number of HSCs and Kit+ cells
in T1, T2-R1, and T2-R2.

• Dropout correction: we classify two cells as belonging to the same clone if they share a significant number
of BCs. Specifically, if cell A has NA different BCs and cell B has NB different BCs, these two cells are
classified as from the same clone if the shared BC number NS satisfies NS/max(NA, NB) > 0.65. Although
the total number of clones drops to 258 (Supplementary Methods Table IV), very similar p values are obtained
for different comparisons (Supplementary Methods Table V), demonstrating the robustness of our results to
different clustering schemes. The insensitivity of the results to dropout correction can be understood by the
fact that this clustering only affects small clones, which are more vulnerable to BC dropout or other sampling
issues.

Although the number of unique clonal BCs is quite sensitive to the threshold of Hamming distance, we found that
the number of identified clones is actually quite robust over a range of Hamming distance threshold (Supplementary
Methods Fig. 3E). This is because each cell may carry multiple BCs, and errors in identifying individual BCs may
not translate to the errors in identifying individual clones. Particularly, setting Hamming distance threshold to be 3
or 4 gives the same clonal annotation (Supplementary Methods Table IV), hence also all the clonal correlations and
their respective p values (Supplementary Methods Table V).

[1] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.
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Supplementary Methods Fig. 3. Clustering BCs into the same clone. (A), Histogram of Hamming distances between
all pairs of distinct BCs. (B), The zoom-in version of A at small distances. BCs within a Hamming distance 4.5 are clustered
within the same clone. (C), Histogram of Hamming distances between the identified “true” clonal BCs and other BCs within
the same clone. (D), Histogram of the number of BCs per clone (each cell may carry several BCs). (E), Effect of the cutoff
Hamming distance on the identified clonal BC number and clone number. No dropout correction is made here. While the
number of clonal BCs are sensitive to this cutoff, the actual clone number is rather robust, as each clone may carry several
BCs.

[2] GA Colvin, JF Lambert, M Abedi, CC Hsieh, JE Carlson, FM Stewart, and PJ Quesenberry. Murine marrow cellularity and
the concept of stem cell competition: geographic and quantitative determinants in stem cell biology. Leukemia, 18(3):575,
2004.

[3] Samuel L Wolock, Romain Lopez, and Allon M Klein. Scrublet: computational identification of cell doublets in single-cell
transcriptomic data. Cell systems, 2019.
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Supplementary Methods Table IV. Summary of the serial/parallel transplantation data. Only cells carrying BCs
are shown here, and these barcoded cells only represent 76% of all sequenced cells. In the middle and lower panel, the diagonal
terms indicate the identified clone number of the corresponding sample.
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Comparison Test Statistic Exp. value (A) P-value (A) Exp. value (B) P-value (B)

HSC1T –HSC2T C(H1, H2) 0.74 0.44 0.74 0.41

HSC1T –Kit2T C(H1,K2) 0.54 0.13 0.53 0.10

Kit1T –Kit2T C(K1,K2) 0.24 0.14 0.22 0.11

Kit1T –HSC2T C(K1, H2) 0.27 0.16 0.25 0.13

1T–2T C(H1 +K1, H2 +K2) 0.44 0.13 0.43 0.11

HSC2T –Kit2T C(H2,K2) 0.91 0.12 0.90 0.16

Exp1T –Exp2T C(E1, E2) 0.03 0.22 0.02 0.50

Act1T –Act2T C(A1, A2) 0.04 0.08 0.03 0.12

Exp1T –Act2T C(E1, A2) 0.58 < 0.0001 0.58 < 0.0001

Act1T –Exp2T C(A1, E2) -0.08 < 0.0001 -0.10 0.0001

HSCR1–KitR1 C(H2.1,K2.1) 0.78 0.44 0.77 0.50

HSCR1–HSCR2 C(H2.1, H2.2) 0.83 0.027 0.82 0.03

HSCR1–KitR2 C(H2.1,K2.2) 0.76 0.053 0.75 0.066

KitR1–KitR2 C(K2.1,K2.2) 0.91 0.0004 0.91 0.0005

R1–R2 C(H2.1 +K2.1, H2.2 +K2.2) 0.91 0.0048 0.90 0.0067

ExpR1–ExpR2 C(E2.1, E2.2) 0.67 0.0013 0.67 0.0022

Exp2Tinactive–Exp
2T
active Mean(Ein

2 )/Mean(Eac
2 ) 3.7 0.049 5.6 0.03

Exp2Tinactive–Exp
2T
active S.t.d(Ein

2 )/S.t.d.(Eac
2 ) 36 0.003 43 0.0035

(HSC-Exp)2Tinactive–(HSC-Exp)
2T
active Mean(EH,in

2 )/Mean(EH,ac
2 ) 2.5 0.056 3.4 0.046

(HSC-Exp)2Tinactive–(HSC-Exp)
2T
active S.t.d(EH,in

2 )/S.t.d.(EH,ac
2 ) 19 0.017 21 0.026

(Kit-Exp)2Tinactive–(Kit-Exp)
2T
active Mean(EK,in

2 )/Mean(EK,ac
2 ) 1.9 0.24 2.8 0.15

(Kit-Exp)2Tinactive–(Kit-Exp)
2T
active S.t.d(EK,in

2 )/S.t.d.(EK,ac
2 ) 22 0.022 26 0.024

Supplementary Methods Table V. List of comparisons between the equipotency model and observed data.
The p-value gives the fraction of PDGM samples of the data set Ω that gives a test statistic at least as extreme as observed
in experiment (two-tailed test). Columns labeled (A) show results without barcode dropout correction (reproduced from
Supplementary Methods Table III for comparison). Columns labeled (B) show results after barcode dropout correction (see
supplemental text).
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